IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v55y2021i2d10.1007_s11123-020-00594-6.html
   My bibliography  Save this article

The closest strong efficient targets in the FDH technology: an enumeration method

Author

Listed:
  • J. Vakili

    (University of Tabriz)

  • R. Sadighi Dizaji

    (University of Tabriz)

Abstract

This paper is concerned with the identification of the closest strong efficient target of a Decision Making Unit (DMU) in the Free Disposal Hull (FDH) technology in Data Envelopment Analysis (DEA). The paper uses the geometrical properties of the FDH Production Possibility Set (PPS) to design and test an enumeration algorithm to obtain the minimum distance from a DMU to the strong efficient frontier of the PPS, corresponding to each of the various returns to scale assumptions. The proposed method solves some simple optimization problems whose optimal solutions are obtained by calculating a limited number of ratios. Then, an attempt will be made to mitigate the problem of the lack of unit and translation invariance of the selected distances by considering weighted norms. Finally, the applicability of the presented method is illustrated by a numerical example using real data.

Suggested Citation

  • J. Vakili & R. Sadighi Dizaji, 2021. "The closest strong efficient targets in the FDH technology: an enumeration method," Journal of Productivity Analysis, Springer, vol. 55(2), pages 91-105, April.
  • Handle: RePEc:kap:jproda:v:55:y:2021:i:2:d:10.1007_s11123-020-00594-6
    DOI: 10.1007/s11123-020-00594-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-020-00594-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-020-00594-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. R. Jahanshahloo & J. Vakili & S. M. Mirdehghan, 2012. "USING THE MINIMUM DISTANCE OF DMUs FROM THE FRONTIER OF THE PPS FOR EVALUATING GROUP PERFORMANCE OF DMUs IN DEA," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(02), pages 1-25.
    2. Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1999. "Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit," European Journal of Operational Research, Elsevier, vol. 113(1), pages 206-214, February.
    3. G. R. Jahanshahloo & J. Vakili & M. Zarepisheh, 2012. "A Linear Bilevel Programming Problem For Obtaining The Closest Targets And Minimum Distance Of A Unit From The Strong Efficient Frontier," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(02), pages 1-19.
    4. Tone, Kaoru & Sahoo, Biresh K., 2003. "Scale, indivisibilities and production function in data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 84(2), pages 165-192, May.
    5. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    6. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    7. Ila Alam & Robin Sickles, 1998. "The Relationship Between Stock Market Returns and Technical Efficiency Innovations: Evidence from the US Airline Industry," Journal of Productivity Analysis, Springer, vol. 9(1), pages 35-51, January.
    8. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    9. M C A Silva Portela & E Thanassoulis & G Simpson, 2004. "Negative data in DEA: a directional distance approach applied to bank branches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1111-1121, October.
    10. Cherchye, Laurens & Van Puyenbroeck, Tom, 2001. "Product mixes as objects of choice in non-parametric efficiency measurement," European Journal of Operational Research, Elsevier, vol. 132(2), pages 287-295, July.
    11. J. Cummins & Hongmin Zi, 1998. "Comparison of Frontier Efficiency Methods: An Application to the U.S. Life Insurance Industry," Journal of Productivity Analysis, Springer, vol. 10(2), pages 131-152, October.
    12. Walter Briec & Kristiaan Kerstens & Philippe Venden Eeckaut, 2004. "Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity," Journal of Economics, Springer, vol. 81(2), pages 155-192, February.
    13. Frances Frei & Patrick Harker, 1999. "Projections Onto Efficient Frontiers: Theoretical and Computational Extensions to DEA," Journal of Productivity Analysis, Springer, vol. 11(3), pages 275-300, June.
    14. repec:adr:anecst:y:1999:i:55-56:p:19 is not listed on IDEAS
    15. Gonzalez, Eduardo & Alvarez, Antonio, 2001. "From efficiency measurement to efficiency improvement: The choice of a relevant benchmark," European Journal of Operational Research, Elsevier, vol. 133(3), pages 512-520, September.
    16. Niels Christian Petersen, 1990. "Data Envelopment Analysis on a Relaxed Set of Assumptions," Management Science, INFORMS, vol. 36(3), pages 305-314, March.
    17. Balaguer-Coll, Maria Teresa & Prior, Diego & Tortosa-Ausina, Emili, 2007. "On the determinants of local government performance: A two-stage nonparametric approach," European Economic Review, Elsevier, vol. 51(2), pages 425-451, February.
    18. Peter Bogetoft, 1996. "DEA on Relaxed Convexity Assumptions," Management Science, INFORMS, vol. 42(3), pages 457-465, March.
    19. Sergio Destefanis, 2002. "The Verdoorn Law: Some Evidence from Non-Parametric Frontier Analysis," Palgrave Macmillan Books, in: John McCombie & Maurizio Pugno & Bruno Soro (ed.), Productivity Growth and Economic Performance, chapter 6, pages 136-164, Palgrave Macmillan.
    20. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    21. J. Vakili, 2017. "New Models for Computing the Distance of DMUs to the Weak Efficient Boundary of Convex and Nonconvex PPSs in DEA," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-20, December.
    22. W. Briec & J. B. Lesourd, 1999. "Metric Distance Function and Profit: Some Duality Results," Journal of Optimization Theory and Applications, Springer, vol. 101(1), pages 15-33, April.
    23. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    24. Yair Mundlak & Donald F. Larson & Rita Butzer, 1999. "Rethinking Within and Between Regressions: The Case of Agricultural Production Functions," Annals of Economics and Statistics, GENES, issue 55-56, pages 475-501.
    25. Fukuyama, Hirofumi & Maeda, Yasunobu & Sekitani, Kazuyuki & Shi, Jianming, 2014. "Input–output substitutability and strongly monotonic p-norm least distance DEA measures," European Journal of Operational Research, Elsevier, vol. 237(3), pages 997-1007.
    26. Sergio Destefanis & Giuseppe Storti, 2002. "Measuring cross-country technological catch-up through variable-parameter FDH," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 109-125, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    2. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    2. Walter Briec & Kristiaan Kerstens, 2006. "Input, output and graph technical efficiency measures on non-convex FDH models with various scaling laws: An integrated approach based upon implicit enumeration algorithms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 135-166, June.
    3. Cesaroni, Giovanni & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2017. "Global and local scale characteristics in convex and nonconvex nonparametric technologies: A first empirical exploration," European Journal of Operational Research, Elsevier, vol. 259(2), pages 576-586.
    4. J. Vakili, 2017. "New Models for Computing the Distance of DMUs to the Weak Efficient Boundary of Convex and Nonconvex PPSs in DEA," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-20, December.
    5. Javad Vakili & Hanieh Amirmoshiri & Rashed Khanjani Shiraz & Hirofumi Fukuyama, 2020. "A modified distance friction minimization approach in data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 789-804, May.
    6. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).
    7. Somayeh Razipour-GhalehJough & Farhad Hosseinzadeh Lotfi & Gholamreza Jahanshahloo & Mohsen Rostamy-malkhalifeh & Hamid Sharafi, 2020. "Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 755-787, May.
    8. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    9. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    10. Aparicio, Juan & Garcia-Nove, Eva M. & Kapelko, Magdalena & Pastor, Jesus T., 2017. "Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis," Omega, Elsevier, vol. 72(C), pages 1-14.
    11. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    12. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
    13. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    14. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    15. Lozano, Sebastián & Khezri, Somayeh, 2021. "Network DEA smallest improvement approach," Omega, Elsevier, vol. 98(C).
    16. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    17. Fangqing Wei & Yanan Fu & Feng Yang & Chun Sun & Sheng Ang, 2023. "Closest target setting with minimum improvement costs considering demand and resource mismatches," Operational Research, Springer, vol. 23(3), pages 1-29, September.
    18. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    19. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    20. Ando, Kazutoshi & Minamide, Masato & Sekitani, Kazuyuki & Shi, Jianming, 2017. "Monotonicity of minimum distance inefficiency measures for Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 260(1), pages 232-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:55:y:2021:i:2:d:10.1007_s11123-020-00594-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.