IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i3p954-962.html
   My bibliography  Save this article

Most productive scale size versus demand fulfillment: A solution to the capacity dilemma

Author

Listed:
  • Lee, Chia-Yen

Abstract

The field of economics associates capacity planning with economic scale size and finds the characteristics of the production function whereas the operations management community focuses on demand fulfillment to reduce the loss of sales or inventory for profit maximization. However, there is a troublesome capacity trade-off for firms that need to achieve economic scale size and demand fulfillment simultaneously; in particular, a firm's demand is variable and some of the variation is random. This study proposes a multi-objective mathematical program with data envelopment analysis (DEA) constraints to set an efficient target which shows a trade-off between the most-productive-scale-size (MPSS) benchmark and a potential demand fulfillment benchmark. The study also employs the minimax regret (MMR) approach and the stochastic programming (SP) technique to address target variations caused by demand fluctuations. The result shows how capacity planning via the proposed models can help managers address the capacity dilemma.

Suggested Citation

  • Lee, Chia-Yen, 2016. "Most productive scale size versus demand fulfillment: A solution to the capacity dilemma," European Journal of Operational Research, Elsevier, vol. 248(3), pages 954-962.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:3:p:954-962
    DOI: 10.1016/j.ejor.2015.07.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171500716X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.07.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew B. Abel & Janice C. Eberly, 1996. "Optimal Investment with Costly Reversibility," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 63(4), pages 581-593.
    2. Lee, Chia-Yen & Johnson, Andrew L., 2012. "Two-dimensional efficiency decomposition to measure the demand effect in productivity analysis," European Journal of Operational Research, Elsevier, vol. 216(3), pages 584-593.
    3. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    4. Lee, Chia-Yen & Johnson, Andrew L., 2014. "Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments," European Journal of Operational Research, Elsevier, vol. 232(3), pages 537-548.
    5. Lee, Chia-Yen & Johnson, Andrew L. & Moreno-Centeno, Erick & Kuosmanen, Timo, 2013. "A more efficient algorithm for Convex Nonparametric Least Squares," European Journal of Operational Research, Elsevier, vol. 227(2), pages 391-400.
    6. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    7. Banker, Rajiv D. & Chang, Hsihui & Cooper, William W., 1996. "Equivalence and implementation of alternative methods for determining returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 89(3), pages 473-481, March.
    8. J Zhu, 2000. "Setting scale efficient targets in DEA via returns to scale estimation method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(3), pages 376-378, March.
    9. G Appa & M Yue, 1999. "On setting scale efficient targets in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(1), pages 60-69, January.
    10. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    11. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, June.
    12. Banker, Rajiv D. & Cooper, William W. & Seiford, Lawrence M. & Thrall, Robert M. & Zhu, Joe, 2004. "Returns to scale in different DEA models," European Journal of Operational Research, Elsevier, vol. 154(2), pages 345-362, April.
    13. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    14. Khodabakhshi, M., 2009. "Estimating most productive scale size with stochastic data in data envelopment analysis," Economic Modelling, Elsevier, vol. 26(5), pages 968-973, September.
    15. Fukuyama, Hirofumi, 2003. "Scale characterizations in a DEA directional technology distance function framework," European Journal of Operational Research, Elsevier, vol. 144(1), pages 108-127, January.
    16. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Sun & Sheng Ang & Fangqing Wei & Dawei Wang & Feng Yang, 2024. "Supply–demand effectiveness: capturing the effects of supply and demand mismatches in operational performance measurement," Operational Research, Springer, vol. 24(2), pages 1-22, June.
    2. Mustapha Daruwana Ibrahim & Sahand Daneshvar & Hüseyin Güden & Bela Vizvari, 2020. "Target setting in data envelopment analysis: efficiency improvement models with predefined inputs/outputs," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1319-1336, December.
    3. Fangqing Wei & Yanan Fu & Feng Yang & Chun Sun & Sheng Ang, 2023. "Closest target setting with minimum improvement costs considering demand and resource mismatches," Operational Research, Springer, vol. 23(3), pages 1-29, September.
    4. Saeed Assani & Jianlin Jiang & Ahmad Assani & Feng Yang, 2019. "Estimating and decomposing most productive scale size in parallel DEA networks with shared inputs: A case of China's Five-Year Plans," Papers 1910.03421, arXiv.org, revised Oct 2019.
    5. Hajar Haghighatpisheh & Sohrab Kordrostami & Alireza Amirteimoori & Farhad Hosseinzadeh Lotfi, 2022. "Optimal scale sizes in input–output allocative data envelopment analysis models," Annals of Operations Research, Springer, vol. 315(2), pages 1455-1476, August.
    6. Eshagh Esfandiar & Robabeh Eslami & Mohammad Khoveyni & Alireza Gilani, 2023. "Identifying the closest most productive scale size unit in data envelopment analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 623-660, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eshagh Esfandiar & Robabeh Eslami & Mohammad Khoveyni & Alireza Gilani, 2023. "Identifying the closest most productive scale size unit in data envelopment analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 623-660, June.
    2. Hadjicostas, Petros & Soteriou, Andreas C., 2006. "One-sided elasticities and technical efficiency in multi-output production: A theoretical framework," European Journal of Operational Research, Elsevier, vol. 168(2), pages 425-449, January.
    3. Jean-Paul Chavas & Kwansoo Kim, 2015. "Nonparametric analysis of technology and productivity under non-convexity: a neighborhood-based approach," Journal of Productivity Analysis, Springer, vol. 43(1), pages 59-74, February.
    4. Sahoo, Biresh K & Khoveyni, Mohammad & Eslami, Robabeh & Chaudhury, Pradipta, 2016. "Returns to scale and most productive scale size in DEA with negative data," European Journal of Operational Research, Elsevier, vol. 255(2), pages 545-558.
    5. A. Davoodi & M. Zarepisheh & H. Rezai, 2015. "The nearest MPSS pattern in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 163-176, March.
    6. Subhash C. Ray, 2014. "Data Envelopment Analysis: An Overview," Working papers 2014-33, University of Connecticut, Department of Economics.
    7. Chia-Yen Lee, 2017. "Directional marginal productivity: a foundation of meta-data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 544-555, May.
    8. Lee, Chia-Yen & Charles, Vincent, 2022. "A robust capacity expansion integrating the perspectives of marginal productivity and capacity regret," European Journal of Operational Research, Elsevier, vol. 296(2), pages 557-569.
    9. Dellnitz, Andreas & Tavana, Madjid, 2024. "Data envelopment analysis: From non-monotonic to monotonic scale elasticities," European Journal of Operational Research, Elsevier, vol. 318(2), pages 549-559.
    10. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    11. Cesaroni, Giovanni & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2017. "Global and local scale characteristics in convex and nonconvex nonparametric technologies: A first empirical exploration," European Journal of Operational Research, Elsevier, vol. 259(2), pages 576-586.
    12. Wang, Ying-Ming & Lan, Yi-Xin, 2013. "Estimating most productive scale size with double frontiers data envelopment analysis," Economic Modelling, Elsevier, vol. 33(C), pages 182-186.
    13. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    14. Zelenyuk, Valentin, 2013. "A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation," European Journal of Operational Research, Elsevier, vol. 228(3), pages 592-600.
    15. Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
    16. Banker, Rajiv D. & Cooper, William W. & Seiford, Lawrence M. & Thrall, Robert M. & Zhu, Joe, 2004. "Returns to scale in different DEA models," European Journal of Operational Research, Elsevier, vol. 154(2), pages 345-362, April.
    17. Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
    18. Chia-Yen Lee & Andrew Johnson, 2015. "Effective production: measuring of the sales effect using data envelopment analysis," Annals of Operations Research, Springer, vol. 235(1), pages 453-486, December.
    19. Zhu, Joe, 2001. "Multidimensional quality-of-life measure with an application to Fortune's best cities," Socio-Economic Planning Sciences, Elsevier, vol. 35(4), pages 263-284, December.
    20. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:3:p:954-962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.