IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i3d10.1007_s12351-020-00602-5.html
   My bibliography  Save this article

Safety of links with respect to the Myerson value for communication situations

Author

Listed:
  • Daniel Li Li

    (Shanghai Business School
    Shanghai University)

  • Erfang Shan

    (Shanghai University)

Abstract

Let $$\mu (N,v,L)$$ μ ( N , v , L ) be the Myerson value for graph games (N, v, L). We call a link ij of a graph L safe if $$\mu _k(N,v,L)\ge \mu _k(N,v,L\setminus \{ij\})$$ μ k ( N , v , L ) ≥ μ k ( N , v , L \ { i j } ) for any $$k\in N$$ k ∈ N , which means that none of players benefits from breaking the link ij. A link $$ij\in L$$ i j ∈ L is called a bridge if N splits into more components after ij is deleted. We show that if (N, v) is convex, then any bridge is safe. Furthermore, if (N, v) is strictly convex, then a link is safe if and only if it is a bridge.

Suggested Citation

  • Daniel Li Li & Erfang Shan, 2022. "Safety of links with respect to the Myerson value for communication situations," Operational Research, Springer, vol. 22(3), pages 2121-2131, July.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-020-00602-5
    DOI: 10.1007/s12351-020-00602-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00602-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00602-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Slikker, 2005. "A characterization of the position value," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(4), pages 505-514, November.
    2. André Casajus, 2009. "Networks and outside options," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 32(1), pages 1-13, January.
    3. Hamiache, Gerard, 1999. "A Value with Incomplete Communication," Games and Economic Behavior, Elsevier, vol. 26(1), pages 59-78, January.
    4. Julia Belau, 2013. "An outside-option-sensitive allocation rule for networks: the kappa-value," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(2), pages 175-188, November.
    5. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    6. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    7. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
    8. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    9. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. van den Nouweland, Anne & Borm, Peter, 1991. "On the Convexity of Communication Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(4), pages 421-430.
    11. Belau, Julia, 2016. "Outside option values for network games," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 76-86.
    12. Ichiishi, Tatsuro, 1981. "Super-modularity: Applications to convex games and to the greedy algorithm for LP," Journal of Economic Theory, Elsevier, vol. 25(2), pages 283-286, October.
    13. Bezalel Peleg & Peter Sudhölter, 2007. "Introduction to the Theory of Cooperative Games," Theory and Decision Library C, Springer, edition 0, number 978-3-540-72945-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    2. Daniel Li Li & Erfang Shan, 2021. "Cooperative games with partial information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 297-309, March.
    3. Sylvain Béal & Anna Khmelnitskaya & Philippe Solal, 2018. "Two-step values for games with two-level communication structure," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 563-587, February.
    4. Sylvain Béal & André Casajus & Frank Huettner, 2018. "Efficient extensions of communication values," Annals of Operations Research, Springer, vol. 264(1), pages 41-56, May.
    5. Surajit Borkotokey & Sujata Goala & Niharika Kakoty & Parishmita Boruah, 2022. "The component-wise egalitarian Myerson value for Network Games," Papers 2201.02793, arXiv.org.
    6. Navarro, Florian, 2020. "The center value: A sharing rule for cooperative games on acyclic graphs," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 1-13.
    7. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    8. van den Nouweland, Anne & Slikker, Marco, 2012. "An axiomatic characterization of the position value for network situations," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 266-271.
    9. Surajit Borkotokey & Loyimee Gogoi & Sudipta Sarangi, 2014. "A Survey of Player-based and Link-based Allocation Rules for Network Games," Studies in Microeconomics, , vol. 2(1), pages 5-26, June.
    10. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    11. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    12. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    13. René Brink & Gerard Laan & Vitaly Pruzhansky, 2011. "Harsanyi power solutions for graph-restricted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 87-110, February.
    14. Huseynov, T. & Talman, A.J.J., 2012. "The Communication Tree Value for TU-games with Graph Communication," Other publications TiSEM 6ba97d87-1ac6-4af7-a981-a, Tilburg University, School of Economics and Management.
    15. André Casajus, 2007. "The position value is the Myerson value, in a sense," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 47-55, September.
    16. Napel, Stefan & Nohn, Andreas & Alonso-Meijide, José Maria, 2012. "Monotonicity of power in weighted voting games with restricted communication," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 247-257.
    17. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    18. Slikker, Marco, 2007. "Bidding for surplus in network allocation problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 493-511, November.
    19. Manuel, C. & Ortega, E. & del Pozo, M., 2020. "Marginality and Myerson values," European Journal of Operational Research, Elsevier, vol. 284(1), pages 301-312.
    20. A. Ghintran & E. González-Arangüena & C. Manuel, 2012. "A probabilistic position value," Annals of Operations Research, Springer, vol. 201(1), pages 183-196, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-020-00602-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.