IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v96y2019i2d10.1007_s11069-019-03580-w.html
   My bibliography  Save this article

Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim

Author

Listed:
  • Amit Bera

    (Indian Institute of Engineering Science and Technology, Shibpur)

  • Bhabani Prasad Mukhopadhyay

    (Indian Institute of Engineering Science and Technology, Shibpur)

  • Debasish Das

    (University of Kalyani)

Abstract

Landslides are one of the most damaging disastrous phenomena that frequently lead to serious problems in hilly areas. The Namchi region of South Sikkim district as a part of Eastern Himalayas is not an exception to it. In the present study, multi-criteria analysis technique is used for landslide hazard zonation mapping. Various thematic layers, namely slope, rainfall distribution map, lineament density, drainage density, slope aspect, geology, land use/land cover and soil map, were integrated in a GIS platform (ArcGIS 10.1) to delineate landslide hazard zone. Analytic hierarchy process was used to determine the weight values of different factors. Relative rating values are assigned for the subclasses of each thematic layer based on their corresponding impact on the landslide triggers, and within a thematic layer, each class was assigned an ordinal rating from 0 to 9. The landslide hazard zonation map of Namchi region was produced based on weighted overly techniques. The landslide hazard map of Namchi region is divided into five vulnerable zones, namely very low-, low-, moderate-, high- and very high-hazard zones. Resulted landslide hazard zonation map was further validated with field study and geospatial technology-based analysis. The findings demonstrate high-landslide-hazard zones are associated with areas of active erosive processes (steep slopes/cut slopes/lineaments). The results indicate the villages Bomtar, Jorethang, Kopchey, Donok, Namthang, Sumbuk, Longchok, Mamring, Turung, Mikkhola, etc. are highly prone to landslides. The final landslide hazard zonation map can be used for the landslide hazard prevention, proper planning of future infrastructure and geoenvironmental development in Namchi region.

Suggested Citation

  • Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.
  • Handle: RePEc:spr:nathaz:v:96:y:2019:i:2:d:10.1007_s11069-019-03580-w
    DOI: 10.1007/s11069-019-03580-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03580-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03580-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Sengupta & S. Gupta & K. Anbarasu, 2010. "Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 31-42, January.
    2. Indrajit Pal & Sankar Nath & Khemraj Shukla & Dilip Pal & Abhishek Raj & K. Thingbaijam & B. Bansal, 2008. "Earthquake hazard zonation of Sikkim Himalaya using a GIS platform," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(3), pages 333-377, June.
    3. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    4. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    5. Maria Kouli & Constantinos Loupasakis & Pantelis Soupios & Filippos Vallianatos, 2010. "Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 599-621, March.
    6. Bakhtiar Feizizadeh & Thomas Blaschke, 2013. "GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2105-2128, February.
    7. Gabriel Legorreta Paulín & Marcus Bursik & José Hubp & Luis Mejía & Fernando Aceves Quesada, 2014. "A GIS method for landslide inventory and susceptibility mapping in the Río El Estado watershed, Pico de Orizaba volcano, México," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 229-241, March.
    8. Yang Hong & Robert Adler & George Huffman, 2007. "Use of satellite remote sensing data in the mapping of global landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 245-256, November.
    9. Danang Sri Hadmoko & Franck Lavigne & Guruh Samodra, 2017. "Application of a semiquantitative and GIS-based statistical model to landslide susceptibility zonation in Kayangan Catchment, Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 437-468, May.
    10. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    11. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    12. Nicolás Younes Cárdenas & Estefanía Erazo Mera, 2016. "Landslide susceptibility analysis using remote sensing and GIS in the western Ecuadorian Andes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1829-1859, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weihua Fang & Haixia Zhang, 2021. "Zonation and scaling of tropical cyclone hazards based on spatial clustering for coastal China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1271-1295, October.
    2. Abhik Saha & Vasanta Govind Kumar Villuri & Ashutosh Bhardwaj, 2022. "Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India," Land, MDPI, vol. 11(10), pages 1-27, October.
    3. Vahed Ghiasi & Seyed Amir Reza Ghasemi & Mahyar Yousefi, 2021. "Landslide susceptibility mapping through continuous fuzzification and geometric average multi-criteria decision-making approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 795-808, May.
    4. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    5. Senapati, Ujjal & Das, Tapan Kumar, 2024. "Delineation of potential alternative agriculture region using RS and AHP-based GIS techniques in the drought prone upper Dwarakeswer river basin, West Bengal, India," Ecological Modelling, Elsevier, vol. 490(C).
    6. Sankar Kumar Nath & Arnab Sengupta & Anand Srivastava, 2021. "Remote sensing GIS-based landslide susceptibility & risk modeling in Darjeeling–Sikkim Himalaya together with FEM-based slope stability analysis of the terrain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3271-3304, September.
    7. Suvam Das & Shantanu Sarkar & Debi Prasanna Kanungo, 2023. "A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 23-72, January.
    8. Ratan Das & Parag Phukon & T. N. Singh, 2022. "Understanding the cause and effect relationship of debris slides in Papum Pare district, Arunachal Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1735-1760, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Alexakis & A. Agapiou & M. Tzouvaras & K. Themistocleous & K. Neocleous & S. Michaelides & D. Hadjimitsis, 2014. "Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: the case study of Paphos area in Cyprus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 119-141, May.
    2. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    3. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    4. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    5. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    6. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    7. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    8. Sadiq Ullah & Mudassar Iqbal & Muhammad Waseem & Adnan Abbas & Muhammad Masood & Ghulam Nabi & Muhammad Atiq Ur Rehman Tariq & Muhammad Sadam, 2024. "Potential Sites for Rainwater Harvesting Focusing on the Sustainable Development Goals Using Remote Sensing and Geographical Information System," Sustainability, MDPI, vol. 16(21), pages 1-23, October.
    9. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    10. Andre Bender & Allan Din & Philippe Favarger & Martin Hoesli & Janne Laakso, 1997. "An Analysis of Perceptions Concerning the Environmental Quality of Housing in Geneva," Urban Studies, Urban Studies Journal Limited, vol. 34(3), pages 503-513, March.
    11. Fabio Blanco-Mesa & Anna M. Gil-Lafuente & José M. Merigó, 2018. "Subjective stakeholder dynamics relationships treatment: a methodological approach using fuzzy decision-making," Computational and Mathematical Organization Theory, Springer, vol. 24(4), pages 441-472, December.
    12. Md Monjurul Islam & Tofael Ahamed & Ryozo Noguchi, 2018. "Land Suitability and Insurance Premiums: A GIS-based Multicriteria Analysis Approach for Sustainable Rice Production," Sustainability, MDPI, vol. 10(6), pages 1-28, May.
    13. Sandeep Kumar & Vikram Gupta, 2021. "Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2461-2488, December.
    14. Martina Kuncova & Jana Seknickova, 2022. "Two-stage weighted PROMETHEE II with results’ visualization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 547-571, June.
    15. Kao, Ling-Jing & Chiu, Chih-Chou & Lin, Hung-Tse & Hung, Yun-Wei & Lu, Cheng-Chin, 2024. "Unveiling the dimensions of digital transformation: A comprehensive taxonomy and assessment model for business," Journal of Business Research, Elsevier, vol. 176(C).
    16. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    17. Amelia Bilbao-Terol & Mar Arenas-Parra & Raquel Quiroga-García & Celia Bilbao-Terol, 2022. "An extended best–worst multiple reference point method: application in the assessment of non-life insurance companies," Operational Research, Springer, vol. 22(5), pages 5323-5362, November.
    18. Shao-Ping Wang & Li-Chun Chen & Miao-Sheng Chen & Mou-Jian Li, 2019. "Purchasing Factors for Travel Insurance by Asian Consumers," International Journal of Human Resource Studies, Macrothink Institute, vol. 9(1), pages 311-329, December.
    19. Hongquan Jiang & Rongxi Wang & Zhiyong Gao & Jianmin Gao & Hongye Wang, 2019. "Classification of weld defects based on the analytical hierarchy process and Dempster–Shafer evidence theory," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 2013-2024, April.
    20. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:96:y:2019:i:2:d:10.1007_s11069-019-03580-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.