IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v81y2016i3d10.1007_s11069-016-2157-8.html
   My bibliography  Save this article

Landslide susceptibility analysis using remote sensing and GIS in the western Ecuadorian Andes

Author

Listed:
  • Nicolás Younes Cárdenas

    (James Cook University)

  • Estefanía Erazo Mera

    (James Cook University)

Abstract

In this paper we created and validated a predictive model for assessing the susceptibility of landslides along highway E-20 in Ecuador, by measuring the degree of spatial association of a landslide inventory with a set of spatial factors in an empirical way. The main aims of this paper are to: (1) determine what spatial factors are most associated with landslide occurrence, (2) determine whether the E-20 has any type of influence on landslide occurrence and, if so, up to what distance. For this, we created a landslide inventory based on multi-temporal images from different sources and used the Yule coefficient and the distance distribution analysis, which enabled us to determine which spatial factors are more closely related to the occurrence of landslides. The findings support the idea that landslides are not randomly distributed, but are associated (positively or negatively) to the different geo-environmental conditions of the study area; in this case, landslides have shown positive association with areas of active erosive processes, granitic rocks, volcanic sandstone and rainfall ranging from 1500 to 1750 mm. The statistical significance of the model was tested in two different ways; thus, it can be considered as valid, showing that each spatial factor has some influence on the occurrence of landslides.

Suggested Citation

  • Nicolás Younes Cárdenas & Estefanía Erazo Mera, 2016. "Landslide susceptibility analysis using remote sensing and GIS in the western Ecuadorian Andes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1829-1859, April.
  • Handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-016-2157-8
    DOI: 10.1007/s11069-016-2157-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2157-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2157-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Remondo & Alberto González-Díez & José De Terán & Antonio Cendrero, 2003. "Landslide Susceptibility Models Utilising Spatial Data Analysis Techniques. A Case Study from the Lower Deba Valley, Guipuzcoa (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 267-279, November.
    2. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    3. Mark Berman, 1986. "Testing for Spatial Association between a Point Process and Another Stochastic Process," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 35(1), pages 54-62, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    2. Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    2. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    3. Alejandro Gonzalez-Ollauri & Slobodan B. Mickovski, 2021. "A Simple GIS-Based Tool for the Detection of Landslide-Prone Zones on a Coastal Slope in Scotland," Land, MDPI, vol. 10(7), pages 1-15, June.
    4. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    5. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    6. repec:jss:jstsof:12:i06 is not listed on IDEAS
    7. Mehrnoosh Jadda & Helmi Shafri & Shattri Mansor, 2011. "PFR model and GiT for landslide susceptibility mapping: a case study from Central Alborz, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 395-412, May.
    8. Lister, Andrew J. & Leites, Laura P., 2018. "Modeling and simulation of tree spatial patterns in an oak-hickory forest with a modular, hierarchical spatial point process framework," Ecological Modelling, Elsevier, vol. 378(C), pages 37-45.
    9. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    10. Esteban Bravo-López & Tomás Fernández Del Castillo & Chester Sellers & Jorge Delgado-García, 2023. "Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods," Land, MDPI, vol. 12(6), pages 1-28, May.
    11. Chuhan Wang & Qigen Lin & Leibin Wang & Tong Jiang & Buda Su & Yanjun Wang & Sanjit Kumar Mondal & Jinlong Huang & Ying Wang, 2022. "The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1967-1988, July.
    12. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    13. Ginés Suárez & María José Domínguez-Cuesta, 2021. "Improving landslide susceptibility predictive power through colluvium mapping in Tegucigalpa, Honduras," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 47-66, January.
    14. Nicoletta D’Angelo & Giada Adelfio, 2024. "Minimum contrast for the first-order intensity estimation of spatial and spatio-temporal point processes," Statistical Papers, Springer, vol. 65(6), pages 3651-3679, August.
    15. Ataollah Shirzadi & Lee Saro & Oh Hyun Joo & Kamran Chapi, 2012. "A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1639-1656, November.
    16. Omid Rahmati & Ali Haghizadeh & Hamid Reza Pourghasemi & Farhad Noormohamadi, 2016. "Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1231-1258, June.
    17. Yanbo Cao & Xinsheng Wei & Wen Fan & Yalin Nan & Wei Xiong & Shilin Zhang, 2021. "Landslide susceptibility assessment using the Weight of Evidence method: A case study in Xunyang area, China," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-18, January.
    18. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    19. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    20. E. Rotigliano & V. Agnesi & C. Cappadonia & C. Conoscenti, 2011. "The role of the diagnostic areas in the assessment of landslide susceptibility models: a test in the sicilian chain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 981-999, September.
    21. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-016-2157-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.