IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v45y2008i3p333-377.html
   My bibliography  Save this article

Earthquake hazard zonation of Sikkim Himalaya using a GIS platform

Author

Listed:
  • Indrajit Pal
  • Sankar Nath
  • Khemraj Shukla
  • Dilip Pal
  • Abhishek Raj
  • K. Thingbaijam
  • B. Bansal

Abstract

An earthquake hazard zonation map of Sikkim Himalaya is prepared using eight thematic layers namely Geology (GE), Soil Site Class (SO), Slope (SL), Landslide (LS), Rock Outcrop (RO), Frequency–Wavenumber (F–K) simulated Peak Ground Acceleration (PGA), Predominant Frequency (PF), and Site Response (SR) at predominant frequencies using Geographic Information System (GIS). This necessitates a large scale seismicity analysis for seismic source zone classification and estimation of maximum earthquake magnitude or maximum credible earthquake to be used as a scenario earthquake for a deterministic or quasi-probabilistic seismic scenario generation. The International Seismological Center (ISC) and Global Centroid Moment Tensor (GCMT) catalogues have been used in the present analysis. Combining b-value, fractal correlation dimension (Dc) of the epicenters and the underlying tectonic framework, four seismic source zones are classified in the northeast Indian region. Maximum Earthquake of M W 8.3 is estimated for the Eastern Himalayan Zone (EHZ) and is used to generate the seismic scenario of the region. The Geohazard map is obtained through the integration of the geological and geomorphological themes namely GE, SO, SL, LS, and RO following a pair-wise comparison in an Analytical Hierarchy Process (AHP). Detail analysis of SR at all the recording stations by receiver function technique is performed using 80 significant events recorded by the Sikkim Strong Motion Array (SSMA). The ground motion synthesis is performed using F–K integration and the corresponding PGA has been estimated using random vibration theory (RVT). Testing for earthquakes of magnitude greater than M W 5, a few cases presented here, establishes the efficacy and robustness of the F–K simulation algorithm. The geohazard coverage is overlaid and sequentially integrated with PGA, PF, and SR vector layers, in order to evolve the ultimate earthquake hazard microzonation coverage of the territory. Earthquake Hazard Index (EHI) quantitatively classifies the terrain into six hazard levels, while five classes could be identified following the Bureau of Indian Standards (BIS) PGA nomenclature for the seismic zonation of India. EHI is found to vary between 0.15 to 0.83 quantitatively classifying the terrain into six hazard levels as “Low” corresponding to BIS Zone II, “Moderate” corresponding to BIS Zone III, “Moderately High” belonging to BIS Zone IV, “High” corresponding to BIS Zone V(A), “Very High” and “Severe” with new BIS zones to Zone V(B) and V(C) respectively. Copyright Springer Science+Business Media B.V. 2008

Suggested Citation

  • Indrajit Pal & Sankar Nath & Khemraj Shukla & Dilip Pal & Abhishek Raj & K. Thingbaijam & B. Bansal, 2008. "Earthquake hazard zonation of Sikkim Himalaya using a GIS platform," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(3), pages 333-377, June.
  • Handle: RePEc:spr:nathaz:v:45:y:2008:i:3:p:333-377
    DOI: 10.1007/s11069-007-9173-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-007-9173-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-007-9173-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas L. Saaty, 1990. "An Exposition of the AHP in Reply to the Paper "Remarks on the Analytic Hierarchy Process"," Management Science, INFORMS, vol. 36(3), pages 259-268, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brijesh K. Bansal & Mithila Verma & Arun K. Gupta & R. Arun Prasath, 2022. "On mitigation of earthquake and landslide hazards in the eastern Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1079-1102, November.
    2. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    3. Diana L. Jaimes & Christian R. Escudero & Karen L. Flores & Araceli Zamora-Camacho, 2023. "Multicriteria seismic hazard and social vulnerability assessment in the Puerto Vallarta metropolitan area, Mexico: toward a comprehensive seismic risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2671-2692, March.
    4. Sukanta Malakar & Abhishek K. Rai, 2022. "Earthquake vulnerability in the Himalaya by integrated multi-criteria decision models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 213-237, March.
    5. G. Papaioannou & L. Vasiliades & A. Loukas, 2015. "Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 399-418, January.
    6. Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.
    7. Sudatta Wadadar & Bhabani Prasad Mukhopadhyay, 2022. "GIS-based landslide susceptibility zonation and comparative analysis using analytical hierarchy process and conventional weighting-based multivariate statistical methods in the Lachung River Basin, No," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1199-1236, September.
    8. Han-Saem Kim & Choong-Ki Chung, 2016. "Integrated system for site-specific earthquake hazard assessment with geotechnical spatial grid information based on GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 981-1007, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    2. Abdelmonaim Okacha & Adil Salhi & Kamal Abdelrahman & Hamid Fattasse & Kamal Lahrichi & Kaoutar Bakhouya & Biraj Kanti Mondal, 2024. "Balancing Environmental and Human Needs: Geographic Information System-Based Analytical Hierarchy Process Land Suitability Planning for Emerging Urban Areas in Bni Bouayach Amid Urban Transformation," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    3. Lee, Heeseok & Shi, Yong & Nazem, Sufi M. & Yeol Kang, Sung & Ho Park, Tae & Ho Sohn, Myung, 2001. "Multicriteria hub decision making for rural area telecommunication networks," European Journal of Operational Research, Elsevier, vol. 133(3), pages 483-495, September.
    4. Boukherroub, Tasseda & LeBel, Luc & Ruiz, Angel, 2017. "A framework for sustainable forest resource allocation: A Canadian case study," Omega, Elsevier, vol. 66(PB), pages 224-235.
    5. Entani, Tomoe & Sugihara, Kazutomi, 2012. "Uncertainty index based interval assignment by Interval AHP," European Journal of Operational Research, Elsevier, vol. 219(2), pages 379-385.
    6. Calderon-Monge, Esther & Pastor-Sanz, Iván & Sendra-García, Javier, 2021. "How to select franchisees: A model proposal," Journal of Business Research, Elsevier, vol. 135(C), pages 676-684.
    7. James G. Dolan & Donald R. Bordley, 1994. "Isoniazid Prophylaxis," Medical Decision Making, , vol. 14(1), pages 1-8, February.
    8. Zahir, Sajjad, 1999. "Geometry of decision making and the vector space formulation of the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 112(2), pages 373-396, January.
    9. Deb Kumar Maity & Sujit Mandal, 2019. "Identification of groundwater potential zones of the Kumari river basin, India: an RS & GIS based semi-quantitative approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 1013-1034, April.
    10. Konstantinos Kokkinos & Vayos Karayannis, 2020. "Supportiveness of Low-Carbon Energy Technology Policy Using Fuzzy Multicriteria Decision-Making Methodologies," Mathematics, MDPI, vol. 8(7), pages 1-26, July.
    11. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    12. Faramondi, Luca & Oliva, Gabriele & Setola, Roberto & Bozóki, Sándor, 2023. "Robustness to rank reversal in pairwise comparison matrices based on uncertainty bounds," European Journal of Operational Research, Elsevier, vol. 304(2), pages 676-688.
    13. Leung, Lawrence C. & Cao, Dong, 2001. "On the efficacy of modeling multi-attribute decision problems using AHP and Sinarchy," European Journal of Operational Research, Elsevier, vol. 132(1), pages 39-49, July.
    14. Paul J. Componation & Dawn R. Utley & Robert L. Armacost, 1999. "Prioritizing components of concurrent engineering programs to support new product development," Systems Engineering, John Wiley & Sons, vol. 2(3), pages 168-176.
    15. Jason R. W. Merrick & John R. Harrald, 2007. "Making Decisions About Safety in US Ports and Waterways," Interfaces, INFORMS, vol. 37(3), pages 240-252, June.
    16. Liu, Xianliang & Ma, Yonghao, 2021. "A method to analyze the rank reversal problem in the ELECTRE II method," Omega, Elsevier, vol. 102(C).
    17. Schneider, Frank, 2008. "Multiple criteria decision making in application layer networks," Bayreuth Reports on Information Systems Management 36, University of Bayreuth, Chair of Information Systems Management.
    18. Zanakis, Stelios H. & Solomon, Anthony & Wishart, Nicole & Dublish, Sandipa, 1998. "Multi-attribute decision making: A simulation comparison of select methods," European Journal of Operational Research, Elsevier, vol. 107(3), pages 507-529, June.
    19. Gomez-Limon, J.A. & Atance, I., 2004. "Identification of public objectives related to agricultural sector support," Journal of Policy Modeling, Elsevier, vol. 26(8-9), pages 1045-1071, December.
    20. Qingsheng Li & Jinliang Huang & Cui Wang & Heshan Lin & Jiwei Zhang & Jinlong Jiang & Bingkun Wang, 2017. "Land Development Suitability Evaluation of Pingtan Island Based on Scenario Analysis and Landscape Ecological Quality Evaluation," Sustainability, MDPI, vol. 9(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:45:y:2008:i:3:p:333-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.