IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v77y2015i3p2005-2026.html
   My bibliography  Save this article

Maximum-recorded overland run-ups of major nearfield paleotsunamis during the past 3000 years along the Cascadia margin, USA, and Canada

Author

Listed:
  • Curt Peterson
  • Gary Carver
  • John Clague
  • Kenneth Cruikshank

Abstract

Maximum-recorded run-up estimates of six major nearfield paleotsunamis, dating from 0.3 to 2.8 ka, are compiled from reported studies at 12 reliable localities distributed over a north–south distance of 1000 km in the Cascadia subduction zone. The run-up estimates are based on surveyed elevations and positions of terminal sand sheet layers that were deposited by the dated paleotsunamis. Maximum terminal deposit elevations from open-coastal sites range from 3 to 12 m NAVD88. Paired proximal and distal run-up sites at four localities demonstrate landward vertical attenuation gradients (−2.5 to −4.2 m km −1 ) of decreasing terminal sand deposit elevation with increasing distance inland. An averaged attenuation gradient is reversed (3.0 m km −1 ) to project paleotsunami run-up elevations to adjacent ocean shorelines. The run-up projections are further adjusted by paleotsunami age and relative sea level curves to estimate shoreline inundation elevations under modern sea level conditions. The tsunami shoreline inundation elevations range from 3 ± 2 to 15 ± 2 m NAVD88, with the largest values occurring along the central Cascadia margin and the smallest values occurring in the eastern Juan de Fuca Strait. Contradictory to some numerical tsunami modeling assumptions, there is no apparent correlation between duration of interseismic strain accumulation or estimated upper-plate elastic flexure and corresponding paleotsunami run-up heights on the central Cascadia margin. The short duration since the last Cascadia megathrust rupture (0.3 ka) cannot be used to imply smaller run-up values for a near-future Cascadia tsunami. Coastal communities should plan for the maximum paleotsunami run-ups as recorded at the nearest reliable run-up localities. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Curt Peterson & Gary Carver & John Clague & Kenneth Cruikshank, 2015. "Maximum-recorded overland run-ups of major nearfield paleotsunamis during the past 3000 years along the Cascadia margin, USA, and Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 2005-2026, July.
  • Handle: RePEc:spr:nathaz:v:77:y:2015:i:3:p:2005-2026
    DOI: 10.1007/s11069-015-1689-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1689-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1689-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Priest & Chris Goldfinger & Kelin Wang & Robert Witter & Yinglong Zhang & António Baptista, 2010. "Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 27-73, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Curt D. Peterson & Sandy Vanderburgh, 2017. "Tidal Flat Depositional Response to Neotectonic Cyclic Uplift and Subsidence (1–2 m) as Superimposed on Latest-Holocene Net Sea Level Rise (1.0 m/ka) in a Large Shallow Mesotidal Wave-Dominated Estu," Journal of Geography and Geology, Canadian Center of Science and Education, vol. 10(1), pages 109-109, March.
    2. Curt D. Peterson & Scott Williams & Craig Andes, 2023. "Cascadia Earthquake-Triggered Rockslide Burial of Beeswax Galleon Wreck Timbers in a Sea Cliff Wave-Cut Platform Site, North Smuggler Cove, Oregon, USA," Journal of Geography and Geology, Canadian Center of Science and Education, vol. 15(1), pages 1-1, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Priest & Yinglong Zhang & Robert Witter & Kelin Wang & Chris Goldfinger & Laura Stimely, 2014. "Tsunami impact to Washington and northern Oregon from segment ruptures on the southern Cascadia subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 849-870, June.
    2. Hamid Zafarani & Leila Etemadsaeed & Mohammad Rahimi & Navid Kheirdast & Amin Rashidi & Anooshiravan Ansari & Mohammad Mokhtari & Morteza Eskandari-Ghadi, 2023. "Probabilistic tsunami hazard analysis for western Makran coasts, south-east Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1275-1311, January.
    3. Hyoungsu Park & Daniel T. Cox & Andre R. Barbosa, 2018. "Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1117-1139, December.
    4. George R. Priest & Robert C. Witter & Yinglong J. Zhang & Chris Goldfinger & Kelin Wang & Jonathan C. Allan, 2017. "New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 285-313, August.
    5. Dawei Gao & Kelin Wang & Tania L. Insua & Matthew Sypus & Michael Riedel & Tianhaozhe Sun, 2018. "Defining megathrust tsunami source scenarios for northernmost Cascadia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 445-469, October.
    6. Jonathan C. Allan & George R. Priest & Yinglong J. Zhang & Laura L. Gabel, 2018. "Maritime tsunami evacuation guidelines for the Pacific Northwest coast of Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 21-52, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:77:y:2015:i:3:p:2005-2026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.