IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i3d10.1007_s11069-018-3456-z.html
   My bibliography  Save this article

Investigation of neural network and fuzzy inference neural network and their optimization using meta-algorithms in river flood routing

Author

Listed:
  • Mohammad R. Hassanvand

    (Semnan University)

  • Hojat Karami

    (Semnan University)

  • Sayed-Farhad Mousavi

    (Semnan University)

Abstract

Flood routing is one of the methods of flood forecasting in rivers to manage and control the flood. Today, the new technique of using the intelligent models is widely reported in various fields of science and engineering, particularly water resources. In this research, flood routing was studied using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models. By using the bat algorithm and imperialist competitive algorithm (ICA), the structure of ANN models was optimized. This process was repeated for combining genetic algorithm and particle swarm optimization algorithm with the ANFIS model. Four input patterns were used for network training, which It−7, It−6, Qt−1, Qt−2 pattern was the best pattern for network input according to the evaluation test. Results of routing of 8 flood hydrographs (6 hydrographs for network training and 2 hydrographs for network testing) indicated that the ANN–ICA predicted the hydrograph volume, peak flow and flood time more accurately. The statistical analyses at the training stage were: RMSE = 0.33, MARE = 0.32, SI = 0.05, BIAS = 0.18 and at the testing stage were: RMSE = 0.3, MARE = 0.32, SI = 0.04, BIAS = 0.08. Also, according to the sensitivity analysis, It−6 has the highest impact on flood discharge. Finally, the flood hydrograph was predicted for a return period of 10,000 years.

Suggested Citation

  • Mohammad R. Hassanvand & Hojat Karami & Sayed-Farhad Mousavi, 2018. "Investigation of neural network and fuzzy inference neural network and their optimization using meta-algorithms in river flood routing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1057-1080, December.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:3:d:10.1007_s11069-018-3456-z
    DOI: 10.1007/s11069-018-3456-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3456-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3456-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehdi Rezaeian Zadeh & Seifollah Amin & Davar Khalili & Vijay Singh, 2010. "Daily Outflow Prediction by Multi Layer Perceptron with Logistic Sigmoid and Tangent Sigmoid Activation Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2673-2688, September.
    2. Ozgur Kisi & Alireza Nia & Mohsen Gosheh & Mohammad Tajabadi & Azadeh Ahmadi, 2012. "Intermittent Streamflow Forecasting by Using Several Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 457-474, January.
    3. Mehdi Nikoo & Fatemeh Ramezani & Marijana Hadzima-Nyarko & Emmanuel Karlo Nyarko & Mohammad Nikoo, 2016. "Flood-routing modeling with neural network optimized by social-based algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Turan & Mehmet Yurdusev, 2014. "Predicting Monthly River Flows by Genetic Fuzzy Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4685-4697, October.
    2. Sinan Jasim Hadi & Mustafa Tombul, 2018. "Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3405-3422, August.
    3. Xianming Dou & Yongguo Yang & Jinhui Luo, 2018. "Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    4. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    5. Taymoor Awchi, 2014. "River Discharges Forecasting In Northern Iraq Using Different ANN Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 801-814, February.
    6. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    7. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    8. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    9. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    10. Ayoub Zeroual & Mohamed Meddi & Ali A. Assani, 2016. "Artificial Neural Network Rainfall-Discharge Model Assessment Under Rating Curve Uncertainty and Monthly Discharge Volume Predictions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3191-3205, July.
    11. Sinan Jasim Hadi & Mustafa Tombul, 2018. "Streamflow Forecasting Using Four Wavelet Transformation Combinations Approaches with Data-Driven Models: A Comparative Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4661-4679, November.
    12. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    13. Hirad Abghari & Hojjat Ahmadi & Sina Besharat & Vahid Rezaverdinejad, 2012. "Prediction of Daily Pan Evaporation using Wavelet Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3639-3652, September.
    14. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    15. Changsam Jeong & Ju-Young Shin & Taesoon Kim & Jun-Haneg Heo, 2012. "Monthly Precipitation Forecasting with a Neuro-Fuzzy Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4467-4483, December.
    16. Gordana Pavić & Marijana Hadzima-Nyarko & Borko Bulajić, 2020. "A Contribution to a UHS-Based Seismic Risk Assessment in Croatia—A Case Study for the City of Osijek," Sustainability, MDPI, vol. 12(5), pages 1-24, February.
    17. Mohammad Dorofki & Ahmed Elshafie & Othman Jaafar & Othman Karim & Sharifah Abdullah, 2014. "A GIS-ANN-Based Approach for Enhancing the Effect of Slope in the Modified Green-Ampt Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 391-406, January.
    18. Jian Tang & Xin-An Yin & Pan Yang & ZhiFeng Yang, 2014. "Assessment of Contributions of Climatic Variation and Human Activities to Streamflow Changes in the Lancang River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2953-2966, August.
    19. Fang-Fang Li & Zhi-Yu Wang & Xiao Zhao & En Xie & Jun Qiu, 2019. "Decomposition-ANN Methods for Long-Term Discharge Prediction Based on Fisher’s Ordered Clustering with MESA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3095-3110, July.
    20. Raúl Parada & Jordi Font & Jordi Casas-Roma, 2019. "Predicting Energy Generation Using Forecasting Techniques in Catalan Reservoirs," Energies, MDPI, vol. 12(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:3:d:10.1007_s11069-018-3456-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.