IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1796-d325953.html
   My bibliography  Save this article

A Contribution to a UHS-Based Seismic Risk Assessment in Croatia—A Case Study for the City of Osijek

Author

Listed:
  • Gordana Pavić

    (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 3, 31000 Osijek, Croatia)

  • Marijana Hadzima-Nyarko

    (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 3, 31000 Osijek, Croatia)

  • Borko Bulajić

    (Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 106 314 Novi Sad, Serbia)

Abstract

Due to increases in the number of inhabitants and their concentrations in densely populated areas, there is a growing need in modern society to be cautious towards the impact of catastrophic natural events. An earthquake is a particularly major example of this. Knowledge of the seismic vulnerability of buildings in Europe and around the world has deepened and expanded over the last 20 years, as a result of the many devastating earthquakes. In this study, a review of seismic risk assessment methods in Croatia was presented with respect to the hazard, exposure, and vulnerability of buildings in the fourth largest city (Osijek) in Croatia. The proposed algorithm for a detailed risk assessment was applied to a database and is currently in its initial stage.

Suggested Citation

  • Gordana Pavić & Marijana Hadzima-Nyarko & Borko Bulajić, 2020. "A Contribution to a UHS-Based Seismic Risk Assessment in Croatia—A Case Study for the City of Osijek," Sustainability, MDPI, vol. 12(5), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1796-:d:325953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Nikoo & Fatemeh Ramezani & Marijana Hadzima-Nyarko & Emmanuel Karlo Nyarko & Mohammad Nikoo, 2016. "Flood-routing modeling with neural network optimized by social-based algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 1-24, May.
    2. Sandi, H. & Pomonis, A. & Francis, S. & Georgescu, E. S. & Mohindra, R. & Borcia, I. S., 2007. "Seismic vulnerability assessment: Methodological elements and applications to the case of Romania," MPRA Paper 25724, University Library of Munich, Germany.
    3. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    4. Alexandru Banica & Lucian Rosu & Ionel Muntele & Adrian Grozavu, 2017. "Towards Urban Resilience: A Multi-Criteria Analysis of Seismic Vulnerability in Iasi City (Romania)," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    5. Anita Anticevic & Marijana Hadzima-Nyarko & Anamarija Rabi, 2015. "Seismic Vulnerability Of Kindergarten Buildings In The City Of Osijek," Economy of eastern Croatia yesterday, today, tommorow, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 4, pages 642-650.
    6. Nela Ivandic & Marijana Hadzima-Nyarko & Tihomir Stefic, 2015. "Seismic Vulnerability Of Primary Schools In The City Osijek," Economy of eastern Croatia yesterday, today, tommorow, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 4, pages 651-659.
    7. Yongmei Zhai & Shenglong Chen & Qianwen Ouyang, 2019. "GIS-Based Seismic Hazard Prediction System for Urban Earthquake Disaster Prevention Planning," Sustainability, MDPI, vol. 11(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Fatih Işık & Fatih Avcil & Ehsan Harirchian & Mehmet Akif Bülbül & Marijana Hadzima-Nyarko & Ercan Işık & Rabia İzol & Dorin Radu, 2023. "A Hybrid Artificial Neural Network—Particle Swarm Optimization Algorithm Model for the Determination of Target Displacements in Mid-Rise Regular Reinforced-Concrete Buildings," Sustainability, MDPI, vol. 15(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordana Pavić & Marijana Hadzima-Nyarko & Borko Bulajić & Željka Jurković, 2020. "Development of Seismic Vulnerability and Exposure Models—A Case Study of Croatia," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    2. Navdeep Agrawal & Laxmi Gupta & Jagabandhu Dixit, 2021. "Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    3. Dieu Tien Bui & Ataollah Shirzadi & Ata Amini & Himan Shahabi & Nadhir Al-Ansari & Shahriar Hamidi & Sushant K. Singh & Binh Thai Pham & Baharin Bin Ahmad & Pezhman Taherei Ghazvinei, 2020. "A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    4. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    5. Md. Abul Kalam Azad & Abu Reza Md. Towfiqul Islam & Md. Siddiqur Rahman & Kurratul Ayen, 2021. "Development of novel hybrid machine learning models for monthly thunderstorm frequency prediction over Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1109-1135, August.
    6. Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    7. David Koren & Katarina Rus, 2019. "The Potential of Open Space for Enhancing Urban Seismic Resilience: A literature Review," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
    8. Jiale Zhu & Yichen Zhang & Jiquan Zhang & Yanan Chen & Yijun Liu & Huanan Liu, 2023. "Multi-Criteria Seismic Risk Assessment Based on Combined Weight-TOPSIS Model and CF-Logistic Regression Model—A Case Study of Songyuan City, China," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    9. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    10. Eliana Fischer & Giovanni Barreca & Annalisa Greco & Francesco Martinico & Alessandro Pluchino & Andrea Rapisarda, 2023. "Seismic risk assessment of a large metropolitan area by means of simulated earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 117-153, August.
    11. Xin Wei & Niaz Muhammad Shahani & Xigui Zheng, 2023. "Predictive Modeling of the Uniaxial Compressive Strength of Rocks Using an Artificial Neural Network Approach," Mathematics, MDPI, vol. 11(7), pages 1-17, March.
    12. Sonia Morán-Rodríguez & David A. Novelo-Casanova, 2018. "A methodology to estimate seismic vulnerability of health facilities. Case study: Mexico City, Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1349-1375, February.
    13. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    14. Xunchang Li & Yifan Liu & Wenyong Zhang & Yaqian Wang, 2023. "Research on an Evaluation Model of Urban Seismic Resilience Based on System Dynamics: A Case Study of Chengdu, China," Sustainability, MDPI, vol. 15(13), pages 1-14, June.
    15. Mohammad R. Hassanvand & Hojat Karami & Sayed-Farhad Mousavi, 2018. "Investigation of neural network and fuzzy inference neural network and their optimization using meta-algorithms in river flood routing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1057-1080, December.
    16. Yasser Ebrahimian Ghajari & Ali Asghar Alesheikh & Mahdi Modiri & Reza Hosnavi & Morteza Abbasi, 2017. "Spatial Modelling of Urban Physical Vulnerability to Explosion Hazards Using GIS and Fuzzy MCDA," Sustainability, MDPI, vol. 9(7), pages 1-29, July.
    17. Blake Byron Walker & Nadine Schuurman & David Swanlund & John J. Clague, 2021. "GIS-based multicriteria evaluation for earthquake response: a case study of expert opinion in Vancouver, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2075-2091, January.
    18. Yuxin Gao & Xianrui Yu & Menghao Xi & Qiuhong Zhao, 2023. "Assessment of Vulnerability Caused by Earthquake Disasters Based on DEA: A Case Study of County-Level Units in Chinese Mainland," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    19. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    20. Seyed Mohammad Haghighi Fard & Naciye Doratli, 2022. "Evaluation of Resilience in Historic Urban Areas by Combining Multi-Criteria Decision-Making System and GIS, with Sustainability and Regeneration Approach: The Case Study of Tehran (IRAN)," Sustainability, MDPI, vol. 14(5), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1796-:d:325953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.