IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i3d10.1007_s11069-018-3281-4.html
   My bibliography  Save this article

Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta

Author

Listed:
  • Pawan Kumar Rai

    (Indian Institute of Technology Delhi)

  • C. T. Dhanya

    (Indian Institute of Technology Delhi)

  • B. R. Chahar

    (Indian Institute of Technology Delhi)

Abstract

River flooding has been causing extensive losses to life and property, which is a serious concern worldwide. To minimize these losses, suitable planning and management practices are required for the floodplain mapping. Flash floods occur almost every year in the deltaic region of Brahmani and Baitarani river basins in India, during the monsoon season. Generally, 1D modelling is considered as a regular practice. But nowadays, model formulations include 1D for the representation of river channels and 2D for representing river floodplains. In the absence of uniform observations, a hybrid model (1D–2D coupled model) has been developed for this deltaic region to identify the extent of inundation and its depth during the flooding, since 1D models alone do not provide detailed information of flooding. Thus, a well-known 2D river hydrodynamic model iRIC was externally coupled with 1D (SWAT and SWMM) models to simulate and visualize flood scenarios and to identify the flood-prone areas. The hydrological model SWAT was calibrated and validated for Brahmani river deltaic basin, with the observed discharge data available. However for Baitarani river basin, observed flow data were missing and only gauge data were available at few monitoring stations. Hence, for Baitarani river basin, the SWMM model was developed and calibrated with the help of Monte Carlo method. Finally, the SWAT- and SWMM-based tributary stream flow outputs were fed together into the iRIC hydrodynamic model as input for flood inundation mapping. The discharge and water gauge data were used for the calibration and validation. The results obtained from the coupled model were found to be in good agreement with the observed data (RMSE value is 0.77 and 0.79 during calibration and validation, respectively), which enabled identification of the flood-prone areas. The developed model may be used as a tool for effective planning and management of natural disasters such as flash floods.

Suggested Citation

  • Pawan Kumar Rai & C. T. Dhanya & B. R. Chahar, 2018. "Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1821-1840, July.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3281-4
    DOI: 10.1007/s11069-018-3281-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3281-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3281-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.
    2. Niranjan Pramanik & Rabindra Panda & Dhrubajyoti Sen, 2010. "One Dimensional Hydrodynamic Modeling of River Flow Using DEM Extracted River Cross-sections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 835-852, March.
    3. Mansour Talebizadeh & Saeid Morid & Seyyed Ayyoubzadeh & Mehdi Ghasemzadeh, 2010. "Uncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1747-1761, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mel Oliveira Guirro & Gean Paulo Michel, 2023. "Hydrological and hydrodynamic reconstruction of a flood event in a poorly monitored basin: a case study in the Rolante River, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 723-743, May.
    2. Manh Xuan Trinh & Frank Molkenthin, 2021. "Flood hazard mapping for data-scarce and ungauged coastal river basins using advanced hydrodynamic models, high temporal-spatial resolution remote sensing precipitation data, and satellite imageries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 441-469, October.
    3. Maxim Arseni & Adrian Rosu & Madalina Calmuc & Valentina Andreea Calmuc & Catalina Iticescu & Lucian Puiu Georgescu, 2020. "Development of Flood Risk and Hazard Maps for the Lower Course of the Siret River, Romania," Sustainability, MDPI, vol. 12(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Xue-hua Zhao & Xu Chen, 2015. "Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2913-2926, June.
    3. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    4. Dibyendu Samantaray & Chandranath Chatterjee & Rajendra Singh & Praveen Gupta & Sushma Panigrahy, 2015. "Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 347-372, March.
    5. Swati Maurya & Prashant K. Srivastava & Lu Zhuo & Aradhana Yaduvanshi & R. K. Mall, 2023. "Future Climate Change Impact on the Streamflow of Mahi River Basin Under Different General Circulation Model Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2675-2696, May.
    6. Shirin Karimi & Bahman Jabbarian Amiri & Arash Malekian, 2019. "Similarity Metrics-Based Uncertainty Analysis of River Water Quality Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1927-1945, April.
    7. Pallavi Tomar & Suraj Kumar Singh & Shruti Kanga & Gowhar Meraj & Nikola Kranjčić & Bojan Đurin & Amitanshu Pattanaik, 2021. "GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    8. Amit Kumar & Raghvender Pratap Singh & Swatantra Kumar Dubey & Kumar Gaurav, 2022. "Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    9. Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    10. Prachi Pratyasha Jena & Banamali Panigrahi & Chandranath Chatterjee, 2016. "Assessment of Cartosat-1 DEM for Modeling Floods in Data Scarce Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1293-1309, February.
    11. Vanessa Sari & Nilza Maria Reis Castro & Olavo Correa Pedrollo, 2017. "Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4909-4923, December.
    12. Cucchiaro, Sara & Straffelini, Eugenio & Chang, Kuo-Jen & Tarolli, Paolo, 2021. "Mapping vegetation-induced obstruction in agricultural ditches: A low-cost and flexible approach by UAV-SfM," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Pierfranco Costabile & Francesco Macchione & Luigi Natale & Gabriella Petaccia, 2015. "Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 181-204, May.
    14. Seyed Morteza Seyedian & Ozgur Kisi & Abbas Parsaie & Mojtaba Kashani, 2024. "Improving the Reliability of Compound Channel Discharge Prediction Using Machine Learning Techniques and Resampling Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4685-4709, September.
    15. Wei Zhang & Tian Li, 2015. "The Influence of Objective Function and Acceptability Threshold on Uncertainty Assessment of an Urban Drainage Hydraulic Model with Generalized Likelihood Uncertainty Estimation Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2059-2072, April.
    16. Lanhua Luo & Qing Zhou & Hong S. He & Liangxia Duan & Gaoling Zhang & Hongxia Xie, 2020. "Relative Importance of Land Use and Climate Change on Hydrology in Agricultural Watershed of Southern China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    17. Aytac Guven & Özgür Kişi, 2011. "Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-coded Linear Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 691-704, January.
    18. Jianzhu Li & Guoqing Li & Shuhan Zhou & Fulong Chen, 2016. "Quantifying the Effects of Land Surface Change on Annual Runoff Considering Precipitation Variability by SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1071-1084, February.
    19. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    20. Sarah Beganskas & Kyle S. Young & Andrew T. Fisher & Ryan Harmon & Sacha Lozano, 2019. "Runoff Modeling of a Coastal Basin to Assess Variations in Response to Shifting Climate and Land Use: Implications for Managed Recharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1683-1698, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3281-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.