IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i5p835-852.html
   My bibliography  Save this article

One Dimensional Hydrodynamic Modeling of River Flow Using DEM Extracted River Cross-sections

Author

Listed:
  • Niranjan Pramanik
  • Rabindra Panda
  • Dhrubajyoti Sen

Abstract

River cross-sections are the prime input to any river hydraulic model for simulation of water level and discharge. Field measurements of river cross-sections are labour intensive and expensive activities. Availability of measured river cross-sections is scanty in most of the developing countries, thereby making it difficult to simulate the water level and discharge using hydraulic models. A methodology for extracting river cross-sections from Shuttle Radar Topographic Mission digital elevation model (SRTM DEM) of 3-arc second has been proposed in the reported study. The extracted river cross-sections were used to simulate the magnitude of flood in the deltaic reaches of Brahmani river basin located in the eastern India. Forty cross-sections along the reaches of the rivers were extracted from the DEM and were used in the MIKE 11 hydrodynamic (MIKE 11HD) model. Prior to using the DEM-extracted river cross-sections in the model, the cross-sections were modified based on the results of the DEM error analysis. Four available measured river cross-sections were compared with the DEM-extracted modified cross-sections to examine their geometric and hydraulic similarity. By changing Manning’s roughness coefficient (n), same stage-discharge relationship could be obtained in both types of cross-sections. Subsequently, the DEM-extracted cross-sections were used in the MIKE 11HD model for the simulation of discharge and water levels at various sections of the rivers. The model was calibrated for the period of June 15–October 31 of the year 1999 and validated for the year 2003. The model validation results showed a close agreement between the simulated and observed stage hydrographs. The calibrated values of Manning’s n were found to vary within the range of 0.02 to 0.033. The study revealed that freely available SRTM DEM-extracted river cross-sections could be used in hydraulic models to simulate stage and discharge hydrographs with considerable accuracy under the scarcity of measured cross-section data. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Niranjan Pramanik & Rabindra Panda & Dhrubajyoti Sen, 2010. "One Dimensional Hydrodynamic Modeling of River Flow Using DEM Extracted River Cross-sections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 835-852, March.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:5:p:835-852
    DOI: 10.1007/s11269-009-9474-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9474-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9474-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Nunes Correia & Filipe Castro Rego & Maria Da Grača Saraiva & Isabel Ramos, 1998. "Coupling GIS with Hydrologic and Hydraulic Flood Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(3), pages 229-249, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cucchiaro, Sara & Straffelini, Eugenio & Chang, Kuo-Jen & Tarolli, Paolo, 2021. "Mapping vegetation-induced obstruction in agricultural ditches: A low-cost and flexible approach by UAV-SfM," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Pawan Kumar Rai & C. T. Dhanya & B. R. Chahar, 2018. "Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1821-1840, July.
    3. Dibyendu Samantaray & Chandranath Chatterjee & Rajendra Singh & Praveen Gupta & Sushma Panigrahy, 2015. "Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 347-372, March.
    4. Prachi Pratyasha Jena & Banamali Panigrahi & Chandranath Chatterjee, 2016. "Assessment of Cartosat-1 DEM for Modeling Floods in Data Scarce Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1293-1309, February.
    5. Pierfranco Costabile & Francesco Macchione & Luigi Natale & Gabriella Petaccia, 2015. "Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 181-204, May.
    6. Hamidreza Rahimi & Saiyu Yuan & Xiaonan Tang & Chunhui Lu & Prateek Singh & Fariba Ahmadi Dehrashid, 2022. "Study on Conveyance Coefficient Influenced by Momentum Exchange Under Steady and Unsteady Flows in Compound Open Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2179-2199, May.
    7. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    8. Pierfranco Costabile & Francesco Macchione, 2012. "Analysis of One-Dimensional Modelling for Flood Routing in Compound Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1065-1087, March.
    9. Pallavi Tomar & Suraj Kumar Singh & Shruti Kanga & Gowhar Meraj & Nikola Kranjčić & Bojan Đurin & Amitanshu Pattanaik, 2021. "GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    10. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    11. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakotoarimanana Zy Harifidy & Rakotoarimanana Zy Misa Harivelo & Ishidaira Hiroshi & Magome Jun & Souma Kazuyoshi, 2022. "A Systematic Review of Water Resources Assessment at a Large River Basin Scale: Case of the Major River Basins in Madagascar," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    2. Carlos Bana e Costa & Paula Antão da Silva & Francisco Nunes Correia, 2004. "Multicriteria Evaluation of Flood Control Measures: The Case of Ribeira do Livramento," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 263-283, June.
    3. Yamei Wang & Zhongwu Li & Zhenghong Tang & Guangming Zeng, 2011. "A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3465-3484, October.
    4. Mohammad Dorofki & Ahmed Elshafie & Othman Jaafar & Othman Karim & Sharifah Abdullah, 2014. "A GIS-ANN-Based Approach for Enhancing the Effect of Slope in the Modified Green-Ampt Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 391-406, January.
    5. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    6. Hai-Min Lyu & Jack Shuilong Shen & Arul Arulrajah, 2018. "Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China," Sustainability, MDPI, vol. 10(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:5:p:835-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.