IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i3d10.1007_s11069-018-3262-7.html
   My bibliography  Save this article

Integration of GIS, AHP and TOPSIS for earthquake hazard analysis

Author

Listed:
  • Penjani Hopkins Nyimbili

    (Istanbul Technical University)

  • Turan Erden

    (Istanbul Technical University)

  • Himmet Karaman

    (Istanbul Technical University)

Abstract

Worldwide, earthquakes and related disasters have persistently had severe negative impacts on human livelihoods and have caused widespread socioeconomic and environmental damage. The severity of these disasters has prompted recognition of the need for comprehensive and effective disaster and emergency management (DEM) efforts, which are required to plan, respond to and develop risk mitigation strategies. In this regard, recently developed methods, known as multi-criteria decision analysis (MCDA), have been widely used in DEM domains by emergency managers to greatly improve the quality of the decision-making process, making it more participatory, explicit, rational and efficient. In this study, MCDA techniques of the Analytical Hierarchical Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), integrated with GIS, were used to produce earthquake hazard and risk maps for earthquake disaster monitoring and analysis for a case study region of Küçükçekmece in Istanbul, Turkey. The five main criteria that have the strongest influence on the impact of earthquakes on the study region were determined: topography, distance to epicentre, soil classification, liquefaction and fault/focal mechanism. AHP was used to determine the weights of these parameters, which were also used as input into the TOPSIS method and GIS (ESRI ArcGIS) for simulating these outputs to produce earthquake hazard maps. The resulting earthquake hazard maps created by both the AHP and TOPSIS models were compared, showing high correlation and compatibility. To estimate the elements at risk, population and building data were used with the AHP and TOPSIS hazard maps for potential loss assessment; thus, we demonstrated the potential of integrating GIS with AHP and TOPSIS in generating hazard maps for effective earthquake disaster and risk management.

Suggested Citation

  • Penjani Hopkins Nyimbili & Turan Erden & Himmet Karaman, 2018. "Integration of GIS, AHP and TOPSIS for earthquake hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1523-1546, July.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3262-7
    DOI: 10.1007/s11069-018-3262-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3262-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3262-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Penjani Hopkins Nyimbili & Turan Erden, 2018. "Spatial decision support systems (SDSS) and software applications for earthquake disaster management with special reference to Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1485-1507, February.
    2. Himmet Karaman & Turan Erden, 2014. "Net earthquake hazard and elements at risk (NEaR) map creation for city of Istanbul via spatial multi-criteria decision analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 685-709, September.
    3. Sánchez-Lozano, Juan M. & Teruel-Solano, Jerónimo & Soto-Elvira, Pedro L. & Socorro García-Cascales, M., 2013. "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 544-556.
    4. Ali Pirdavani & Tom Brijs & Geert Wets, 2009. "A Multiple Criteria Decision‐Making Approach for Prioritizing Accident Hotspots in the Absence of Crash Data," Transport Reviews, Taylor & Francis Journals, vol. 30(1), pages 97-113, August.
    5. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    6. H Voogd, 1982. "Multicriteria Evaluation with Mixed Qualitative and Quantitative Data," Environment and Planning B, , vol. 9(2), pages 221-236, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengyu Chen, 2019. "A Novel Coordinated TOPSIS Based on Coefficient of Variation," Mathematics, MDPI, vol. 7(7), pages 1-17, July.
    2. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    3. Ömer Kaya & Kadir Diler Alemdar & Tiziana Campisi & Ahmet Tortum & Merve Kayaci Çodur, 2021. "The Development of Decarbonisation Strategies: A Three-Step Methodology for the Suitable Analysis of Current EVCS Locations Applied to Istanbul, Turkey," Energies, MDPI, vol. 14(10), pages 1-21, May.
    4. Ersin Aksoy & Serdar Selim, 2020. "An automated approach for determination and prioritization of urban potential risk areas within the scope of superstructure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1077-1091, August.
    5. Nannan Wang & Xiaoyan Chen & Guobin Wu, 2019. "Public Private Partnerships, a Value for Money Solution for Clean Coal District Heating Operations," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    6. Nyimbili, Penjani Hopkins & Erden, Turan, 2020. "GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in Istanbul, Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    7. Yanlong Guo & Peiyu He & Pengyu Chen & Linfu Zhang, 2024. "Ecological Evaluation of Land Resources in the Yangtze River Delta Region by Remote Sensing Observation," Land, MDPI, vol. 13(8), pages 1-18, July.
    8. Xinchang Zhang & Min Chen & Kai Guo & Yang Liu & Yi Liu & Weinan Cai & Hua Wu & Zeyi Chen & Yiyun Chen & Jianguo Zhang, 2021. "Regional Land Eco-Security Evaluation for the Mining City of Daye in China Using the GIS-Based Grey TOPSIS Method," Land, MDPI, vol. 10(2), pages 1-18, January.
    9. Jiaji Pan & Ruilin Fan & Hanlu Zhang & Yi Gao & Zhiquan Shu & Zhongxiang Chen, 2022. "Investigating the Effectiveness of Government Public Health Systems against COVID-19 by Hybrid MCDM Approaches," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
    10. Sukanta Malakar & Abhishek K. Rai, 2022. "Earthquake vulnerability in the Himalaya by integrated multi-criteria decision models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 213-237, March.
    11. Mohammad Mojtahedi & Riza Yosia Sunindijo & Fatma Lestari & Suparni & Oktomi Wijaya, 2021. "Developing Hospital Emergency and Disaster Management Index Using TOPSIS Method," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    12. Da Huang & Mei Han, 2021. "Research on Evaluation Method of Freight Transportation Environmental Sustainability," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    13. Jihye Han & Jinsoo Kim & Soyoung Park & Sanghun Son & Minji Ryu, 2020. "Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest," Sustainability, MDPI, vol. 12(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    2. López-Bravo, Celia & Mora-López, Llanos & Sidrach-deCardona, Mariano & Márquez-Ballesteros, María José, 2024. "A comprehensive analysis based on GIS-AHP to minimise the social and environmental impact of the installation of large-scale photovoltaic plants in south Spain," Renewable Energy, Elsevier, vol. 226(C).
    3. Nyimbili, Penjani Hopkins & Erden, Turan, 2020. "GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in Istanbul, Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    4. Nzotcha, Urbain & Kenfack, Joseph & Blanche Manjia, Marceline, 2019. "Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 930-947.
    5. Yılmaz, Kutay & Dinçer, Ali Ersin & Ayhan, Elif N., 2023. "Exploring flood and erosion risk indices for optimal solar PV site selection and assessing the influence of topographic resolution," Renewable Energy, Elsevier, vol. 216(C).
    6. Yang, Dong & Jiang, Liping & Ng, Adolf K.Y., 2018. "One Belt one Road, but several routes: A case study of new emerging trade corridors connecting the Far East to Europe," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 190-204.
    7. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    8. Nina Almasifar & Tülay Özdemir Canbolat & Milad Akhavan & Roberto Alonso González-Lezcano, 2021. "Proposing a New Methodology for Monument Conservation “SCOPE MANAGEMENT” by the Use of an Analytic Hierarchy Process Project Management Institute System and the ICOMOS Burra Charter," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    9. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    10. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    11. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    12. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    13. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    14. Lim, Chulmin & Rowsell, Joe & Kim, Seongcheol, 2023. "Exploring the killer domains to create new value: A Comparative case study of Canadian and Korean telcos," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277998, International Telecommunications Society (ITS).
    15. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    16. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    17. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    18. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    19. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    20. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3262-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.