IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2844-d1477497.html
   My bibliography  Save this article

Fuzzy Multi-Objective, Multi-Period Integrated Routing–Scheduling Problem to Distribute Relief to Disaster Areas: A Hybrid Ant Colony Optimization Approach

Author

Listed:
  • Malihe Niksirat

    (Department of Computer Sciences, Birjand University of Technology, Birjand 97198-66981, Iran)

  • Mohsen Saffarian

    (Department of Industrial Engineering, Birjand University of Technology, Birjand 97198-66981, Iran)

  • Javad Tayyebi

    (Department of Industrial Engineering, Birjand University of Technology, Birjand 97198-66981, Iran)

  • Adrian Marius Deaconu

    (Department of Mathematics and Computer Science, Transylvania University of Brasov, 500036 Brașov, Romania)

  • Delia Elena Spridon

    (Department of Mathematics and Computer Science, Transylvania University of Brasov, 500036 Brașov, Romania)

Abstract

This paper explores a multi-objective, multi-period integrated routing and scheduling problem under uncertain conditions for distributing relief to disaster areas. The goals are to minimize costs and maximize satisfaction levels. To achieve this, the proposed mathematical model aims to speed up the delivery of relief supplies to the most affected areas. Additionally, the demands and transportation times are represented using fuzzy numbers to more accurately reflect real-world conditions. The problem was formulated using a fuzzy multi-objective integer programming model. To solve it, a hybrid algorithm combining a multi-objective ant colony system and simulated annealing algorithm was proposed. This algorithm adopts two ant colonies to obtain a set of nondominated solutions (the Pareto set). Numerical analyses have been conducted to determine the optimal parameter values for the proposed algorithm and to evaluate the performance of both the model and the algorithm. Furthermore, the algorithm’s performance was compared with that of the multi-objective cat swarm optimization algorithm and multi-objective fitness-dependent optimizer algorithm. The numerical results demonstrate the computational efficiency of the proposed method.

Suggested Citation

  • Malihe Niksirat & Mohsen Saffarian & Javad Tayyebi & Adrian Marius Deaconu & Delia Elena Spridon, 2024. "Fuzzy Multi-Objective, Multi-Period Integrated Routing–Scheduling Problem to Distribute Relief to Disaster Areas: A Hybrid Ant Colony Optimization Approach," Mathematics, MDPI, vol. 12(18), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2844-:d:1477497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    2. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    3. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    4. Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    5. Barbarosoglu, Gulay & Ozdamar, Linet & Cevik, Ahmet, 2002. "An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations," European Journal of Operational Research, Elsevier, vol. 140(1), pages 118-133, July.
    6. Mahmoud Golabi & Seyed Mahdi Shavarani & Gokhan Izbirak, 2017. "An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1545-1565, July.
    7. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    8. Farnaz Barzinpour & Mohsen Saffarian & Ahmad Makoui & Ebrahim Teimoury, 2014. "Metaheuristic Algorithm for Solving Biobjective Possibility Planning Model of Location-Allocation in Disaster Relief Logistics," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    2. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    3. Ghavamifar, Ali & Torabi, S. Ali & Moshtari, Mohammad, 2022. "A hybrid relief procurement contract for humanitarian logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    4. Moddassir Khan Nayeem & Gyu M. Lee, 2021. "Robust Design of Relief Distribution Networks Considering Uncertainty," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    5. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    7. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    8. Wang, Jing & Cai, Jianping & Yue, Xiaohang & Suresh, Nallan C., 2021. "Pre-positioning and real-time disaster response operations: Optimization with mobile phone location data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    9. Souza, Juliano Silva & Lim-Apo, Flávio Araújo & Varella, Leonardo & Coelho, Antônio Sérgio & Souza, João Carlos, 2022. "Multi-period optimization model for planning people allocation in shelters and distributing aid with special constraints," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    10. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    11. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    12. Hu, Shao-Long & Han, Chuan-Feng & Meng, Ling-Peng, 2016. "Stochastic optimization for investment in facilities in emergency prevention," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 14-31.
    13. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    14. Zhang, Lingye & Lu, Jing & Yang, Zaili, 2021. "Optimal scheduling of emergency resources for major maritime oil spills considering time-varying demand and transportation networks," European Journal of Operational Research, Elsevier, vol. 293(2), pages 529-546.
    15. Jeong, Ho Young & Yu, David J. & Min, Byung-Cheol & Lee, Seokcheon, 2020. "The humanitarian flying warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    16. Aurelie Charles & Matthieu Lauras & Luk N. van Wassenhove & Lionel Dupont, 2016. "Designing an efficient humanitarian supply network," Post-Print hal-01532132, HAL.
    17. Sheu, Jiuh-Biing, 2014. "Post-disaster relief–service centralized logistics distribution with survivor resilience maximization," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 288-314.
    18. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    19. Zhang, Yuwei & Li, Zhenping & Zhao, Yuwei, 2023. "Multi-mitigation strategies in medical supplies for epidemic outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    20. Ali Torabi, S. & Shokr, Iman & Tofighi, Saeideh & Heydari, Jafar, 2018. "Integrated relief pre-positioning and procurement planning in humanitarian supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 123-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2844-:d:1477497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.