IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i3p2037-2054.html
   My bibliography  Save this article

Scenario-based risk framework selection and assessment model development for natural disasters: a case study of typhoon storm surges

Author

Listed:
  • Mengya Li
  • Jun Wang
  • Xiaojing Sun

Abstract

Many studies have revealed the importance of risk assessment of natural disasters for public safety management, emergency responses and insurance purchases. This paper focuses on three aspects of a risk assessment process: (1) comparing the existing risk frameworks and assessment methods, (2) conceptualizing a scenario-based risk analysis approach and (3) specifying a quantitative assessment model. After a close examination of relevant research, we selected the triad of Hazard, Vulnerability and Adaptation Capability as the risk framework for the present study. We also prescribed several scenarios based on the spatiotemporal dynamic environment leading to given disasters. The assessment model is tested with six scenarios of typhoon storm surges striking Yuhuan County in Zhejiang Province, China. Three findings are highlighted in this paper. First, scenario-based simulation has become a dominant approach in risk analysis under the circumstances where disasters of high intensity, complexity and variability tend to occur frequently. This approach allows identification of acceptable risk with a certain probability. Second, the assessment model can reveal the collective enhancing effect of Hazard and Vulnerability and the mitigation effect of Adaptation Capability to the comprehensive risk. Lastly, the empirical study of Yuhuan indicates that R = 0.90 × H × V − 0.10 × C is the most feasible model for assessing the risk of typhoon storm surges. In general, the proposed methodology may be adapted for risk analysis of diverse disaster scenarios. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Mengya Li & Jun Wang & Xiaojing Sun, 2016. "Scenario-based risk framework selection and assessment model development for natural disasters: a case study of typhoon storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2037-2054, February.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:3:p:2037-2054
    DOI: 10.1007/s11069-015-2059-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-2059-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-2059-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Wang & Wei Gao & Shiyuan Xu & Lizhong Yu, 2012. "Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China," Climatic Change, Springer, vol. 115(3), pages 537-558, December.
    2. Yaolong Liu & Zhenlou Chen & Jun Wang & Beibei Hu & Mingwu Ye & Shiyuan Xu, 2012. "Large-scale natural disaster risk scenario analysis: a case study of Wenzhou City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1287-1298, February.
    3. Ken Granger, 2003. "Quantifying Storm Tide Risk in Cairns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(2), pages 165-185, October.
    4. Xilin Liu & Dan Zhang, 2004. "Comparison of Two Empirical Models for Gully-Specific Debris Flow Hazard Assessment in Xiaojiang Valley of Southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(1), pages 157-175, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruce Lambert & James Merten, 2024. "Standing Watch: Baselining Predictable Events That Influence Maritime Operations in the Context of the UN’s Sustainable Development Goals," Sustainability, MDPI, vol. 16(9), pages 1-26, May.
    2. Yong Ding & Pei Wang & Xiaoling Liu & Xuliang Zhang & Lei Hong & Zhibin Cao, 2020. "Risk assessment of highway structures in natural disaster for the property insurance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2663-2685, December.
    3. Juan Camilo Gomez-Zapata & Cristhian Parrado & Theresa Frimberger & Fernando Barragán-Ochoa & Fabio Brill & Kerstin Büche & Michael Krautblatter & Michael Langbein & Massimiliano Pittore & Hugo Rosero, 2021. "Community Perception and Communication of Volcanic Risk from the Cotopaxi Volcano in Latacunga, Ecuador," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    4. Xiaorong He, 2018. "Typhoon disaster assessment based on Dombi hesitant fuzzy information aggregation operators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1153-1175, February.
    5. Lu Chen & Yue-cheng Huang & Rui-zhen Bai & An Chen, 2017. "Regional disaster risk evaluation of China based on the universal risk model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 647-660, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengya Li & Jun Wang & Xiaojing Sun, 2016. "Scenario-based risk framework selection and assessment model development for natural disasters: a case study of typhoon storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2037-2054, February.
    2. Jie Yin & Zhane Yin & Shiyuan Xu, 2013. "Composite risk assessment of typhoon-induced disaster for China’s coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1423-1434, December.
    3. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    4. Xi-Cun He & Tian-Liang Yang & Shui-Long Shen & Ye-Shuang Xu & Arul Arulrajah, 2019. "Land Subsidence Control Zone and Policy for the Environmental Protection of Shanghai," IJERPH, MDPI, vol. 16(15), pages 1-13, July.
    5. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    6. Chen-Kun Chung, 2019. "The exploration of relationship between land subsidence and landscape transformation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1051-1068, July.
    7. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    8. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    9. Su-Ping Liu & Bin Shi & Kai Gu & Cheng-Cheng Zhang & Ji-Long Yang & Song Zhang & Peng Yang, 2020. "Land subsidence monitoring in sinking coastal areas using distributed fiber optic sensing: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3043-3061, September.
    10. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    11. R. Dean Hardy & Bryan L. Nuse, 2016. "Global sea-level rise: weighing country responsibility and risk," Climatic Change, Springer, vol. 137(3), pages 333-345, August.
    12. Hui Zhang & Jiong Cheng & Zhifeng Wu & Cheng Li & Jun Qin & Tong Liu, 2018. "Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    13. Erlis Saputra & Inge Satna Ariyanto & Rizki Adriadi Ghiffari & Moh Syahrul Irfan Fahmi, 2021. "Land Value in a Disaster-Prone Urbanized Coastal Area: A Case Study from Semarang City, Indonesia," Land, MDPI, vol. 10(11), pages 1-18, November.
    14. Yong Shi & Chun Shi & Shi-Yuan Xu & A-Li Sun & Jun Wang, 2010. "Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 259-272, May.
    15. Der-Guey Lin & Sen-Yen Hsu & Kuang-Tsung Chang, 2009. "Numerical simulations of flow motion and deposition characteristics of granular debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 623-650, September.
    16. Christian Geiß & Hannes Taubenböck, 2013. "Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 7-48, August.
    17. Xinmeng Shan & Jiahong Wen & Min Zhang & Luyang Wang & Qian Ke & Weijiang Li & Shiqiang Du & Yong Shi & Kun Chen & Banggu Liao & Xiande Li & Hui Xu, 2019. "Scenario-Based Extreme Flood Risk of Residential Buildings and Household Properties in Shanghai," Sustainability, MDPI, vol. 11(11), pages 1-18, June.
    18. E. F. Asbridge & D. Low Choy & B. Mackey & S. Serrao-Neumann & P. Taygfeld & K. Rogers, 2021. "Coastal flood risk within a peri-urban area: Sussex Inlet district, SE Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 999-1026, October.
    19. Yui-Yip Lau & Tsz-Leung Yip & Maxim A. Dulebenets & Yuk-Ming Tang & Tomoya Kawasaki, 2022. "A Review of Historical Changes of Tropical and Extra-Tropical Cyclones: A Comparative Analysis of the United States, Europe, and Asia," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    20. Ruiling Sun & Ge Gao & Zaiwu Gong & Jie Wu, 2020. "A review of risk analysis methods for natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 571-593, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:3:p:2037-2054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.