IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i8p4499-d789796.html
   My bibliography  Save this article

A Review of Historical Changes of Tropical and Extra-Tropical Cyclones: A Comparative Analysis of the United States, Europe, and Asia

Author

Listed:
  • Yui-Yip Lau

    (Division of Business and Hospitality Management, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China)

  • Tsz-Leung Yip

    (Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong, China)

  • Maxim A. Dulebenets

    (Department of Civil & Environmental Engineering, College of Engineering, Florida A&M University-Florida State University (FAMU-FSU), Tallahassee, FL 32310-6046, USA)

  • Yuk-Ming Tang

    (Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China)

  • Tomoya Kawasaki

    (Department of Systems Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan)

Abstract

Tropical cyclones are highly destructive weather systems, especially in coastal areas. Tropical cyclones with maximum sustained winds exceeding 74 mph (≈119 kph) are classified as typhoons in the Northwest Pacific, whilst the term ‘hurricanes’ applies to other regions. This study aims to investigate the general characteristics of the most devastating and catastrophic tropical cyclones in the USA Europe, and Asia. To achieve the study objectives, the three most devastating typical tropical cyclones in each region were selected. The tropical cyclones were examined based on various features, such as the number of deaths, minimum pressure, highest wind speed, total financial losses, and frequency per year. In contrast to Europe and Asia, the USA has recorded the highest number of catastrophic tropical cyclones. The damage induced by hurricanes Katrina, Harvey, and Maria in the USA totalled approximately USD USD 380 billion. In addition, the present research highlights the demand to improve the public attitude and behaviour toward the impact of climate change along with the enhancement of climate change alleviation strategies. The number of intense tropical cyclones is expected to rise, and the tropical cyclone-related precipitation rate is expected to increase in warmer-climate areas. Stakeholders and industrial practitioners may use the research findings to design resilience and adaptation plans in the face of tropical cyclones, allowing them to assess the effects of climate change on tropical cyclone incidents from an academic humanitarian logistics viewpoint in the forthcoming years.

Suggested Citation

  • Yui-Yip Lau & Tsz-Leung Yip & Maxim A. Dulebenets & Yuk-Ming Tang & Tomoya Kawasaki, 2022. "A Review of Historical Changes of Tropical and Extra-Tropical Cyclones: A Comparative Analysis of the United States, Europe, and Asia," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:8:p:4499-:d:789796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/8/4499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/8/4499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Zhang & Wei Zhang & Yongqin Chen & Tao Jiang, 2011. "Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 267-278, May.
    2. Panahi, Roozbeh & Ng, Adolf K.Y. & Pang, Jiayi, 2020. "Climate change adaptation in the port industry: A complex of lingering research gaps and uncertainties," Transport Policy, Elsevier, vol. 95(C), pages 10-29.
    3. Fletcher, Margaret & Zhao, Yang & Plakoyiannaki, Emmanuella & Buck, Trevor, 2018. "Three Pathways to Case Selection in International Business: A Twenty–Year Review, Analysis and Synthesis," International Business Review, Elsevier, vol. 27(4), pages 755-766.
    4. Saudamini Das, 2012. "The role of natural ecosystems and socio-economic factors in the vulnerability of coastal villages to cyclone and storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 531-546, October.
    5. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
    6. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    7. Klaus Eisenack & Rebecca Stecker & Diana Reckien & Esther Hoffmann, 2012. "Adaptation to climate change in the transport sector: a review of actions and actors," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(5), pages 451-469, June.
    8. Jun Wang & Wei Gao & Shiyuan Xu & Lizhong Yu, 2012. "Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China," Climatic Change, Springer, vol. 115(3), pages 537-558, December.
    9. Darya Hrydziushka & Urooj Pasha & Arild Hoff, 2021. "An Extended Model for Disaster Relief Operations Used on the Hagibis Typhoon Case in Japan," Logistics, MDPI, vol. 5(2), pages 1-30, June.
    10. Thomas Schmidlin, 2009. "Human fatalities from wind-related tree failures in the United States, 1995–2007," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 13-25, July.
    11. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    12. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    13. Liu, Zhen & Tang, Yuk Ming & Chau, Ka Yin & Chien, Fengsheng & Iqbal, Wasim & Sadiq, Muhammad, 2021. "Incorporating strategic petroleum reserve and welfare losses: A way forward for the policy development of crude oil resources in South Asia," Resources Policy, Elsevier, vol. 74(C).
    14. Yajing Shen & Shiyan Lou & Xiujuan Zhao & Kuai Peng Ip & Hui Xu & Jingwen Zhang, 2020. "Factors Impacting Risk Perception under Typhoon Disaster in Macao SAR, China," IJERPH, MDPI, vol. 17(20), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiong Chen & Hongyu Zhang & Yui-Yip Lau & Tianni Wang & Wen Wang & Guangsheng Zhang, 2023. "Climate Change, Carbon Peaks, and Carbon Neutralization: A Bibliometric Study from 2006 to 2023," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    2. Tianni Wang & Haochen Feng & Mark Ching-Pong Poo & Yui-Yip Lau, 2024. "Analysis of the Network Efficiency of Chinese Ports in Global Shipping under the Impacts of Typhoons," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    3. Muizz Shah & Stuart E. Norris & Richard Turner & Richard G. J. Flay, 2023. "A review of computational fluid dynamics application to investigate tropical cyclone wind speeds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 897-915, May.
    4. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    5. Apurba Roy & Ilan Noy, 2023. "Impact of extratropical cyclones, floods, and wildfires on firms’ financial performance in New Zealand," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 493-574, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    2. Yanjie Zhang & Bilal M. Ayyub & Dongming Zhang & Hongwei Huang & Yalda Saadat, 2019. "Impact of Water Level Rise on Urban Infrastructures: Washington, DC, and Shanghai as Case Studies," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2718-2731, December.
    3. Xi-Cun He & Tian-Liang Yang & Shui-Long Shen & Ye-Shuang Xu & Arul Arulrajah, 2019. "Land Subsidence Control Zone and Policy for the Environmental Protection of Shanghai," IJERPH, MDPI, vol. 16(15), pages 1-13, July.
    4. Jiyong Ding & Juefang Cai & Guangxiang Guo & Chen Chen, 2018. "An Emergency Decision-Making Method for Urban Rainstorm Water-Logging: A China Study," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    5. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    6. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    7. Lanre Ibrahim, Ridwan & Bello Ajide, Kazeem & Usman, Muhammad & Kousar, Rakhshanda, 2022. "Heterogeneous effects of renewable energy and structural change on environmental pollution in Africa: Do natural resources and environmental technologies reduce pressure on the environment?," Renewable Energy, Elsevier, vol. 200(C), pages 244-256.
    8. Rongrong Xu & Yongxiang Wu & Ming Chen & Xuan Zhang & Wei Wu & Long Tan & Gaoxu Wang & Yi Xu & Bing Yan & Yuedong Xia, 2019. "Calculation of the contribution rate of China’s hydraulic science and technology based on a feedforward neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    9. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    10. Ying Xu & Christopher Findlay, 2019. "Farmers’ constraints, governmental support and climate change adaptation: evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 866-880, October.
    11. Chen-Kun Chung, 2019. "The exploration of relationship between land subsidence and landscape transformation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1051-1068, July.
    12. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    13. Gentile, Giancarlo & Picotti, Giovanni & Binotti, Marco & Cholette, Michael E. & Manzolini, Giampaolo, 2024. "A comprehensive methodology for the design of solar tower external receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    14. Chien, FengSheng & Chau, Ka Yin & Sadiq, Muhammad & Hsu, Ching-Chi, 2022. "The impact of economic and non-economic determinants on the natural resources commodity prices volatility in China," Resources Policy, Elsevier, vol. 78(C).
    15. Ping Ai & Dingbo Yuan & Chuansheng Xiong, 2018. "Copula-Based Joint Probability Analysis of Compound Floods from Rainstorm and Typhoon Surge: A Case Study of Jiangsu Coastal Areas, China," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    16. Zhao, Wei & Liu, Yishu & Huang, Lihua, 2022. "Estimating environmental Kuznets Curve in the presence of eco-innovation and solar energy: An analysis of G-7 economies," Renewable Energy, Elsevier, vol. 189(C), pages 304-314.
    17. Schembri, Joe & Tang, Yee Kwan & Fletcher, Margaret & Dimitratos, Pavlos, 2019. "How do European trade promotion organisations manage their stakeholders?," International Business Review, Elsevier, vol. 28(6), pages 1-1.
    18. Talan, Amogh & Rao, Amar & Sharma, Gagan Deep & Apostu, Simona-Andreea & Abbas, Shujaat, 2023. "Transition towards clean energy consumption in G7: Can financial sector, ICT and democracy help?," Resources Policy, Elsevier, vol. 82(C).
    19. Alaa Abdelshafie & May Salah & Tomaž Kramberger & Dejan Dragan, 2022. "Repositioning and Optimal Re-Allocation of Empty Containers: A Review of Methods, Models, and Applications," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    20. Yunzhao, Lu, 2022. "Modelling the role of eco innovation, renewable energy, and environmental taxes in carbon emissions reduction in E−7 economies: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 190(C), pages 309-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:8:p:4499-:d:789796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.