IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v30y2003i2p165-185.html
   My bibliography  Save this article

Quantifying Storm Tide Risk in Cairns

Author

Listed:
  • Ken Granger

Abstract

The United Nations International Decade for Natural Disaster Reduction (IDNDR)gave rise to an increasing level of attention to the risks posed by a range of naturalhazards and the development of strategies by which to reduce those risks. It waswidely recognised that in order to evaluate risk treatment strategies it was necessaryto `measure' the level of risk that already existed and the level of risk that would beencountered with the treatment strategy(s) in place. This paper outlines the methodology developed under the AGSO (now GeoscienceAustralia) Cities Project to quantify the risk associated with storm tide inundation. It includes the methodology for `measuring' the level of community exposure to storm tide hazards and the methodology for `measuring' community vulnerability. The Far North Queensland city of Cairns is used as the case study to demonstrate the application of these methods. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Ken Granger, 2003. "Quantifying Storm Tide Risk in Cairns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(2), pages 165-185, October.
  • Handle: RePEc:spr:nathaz:v:30:y:2003:i:2:p:165-185
    DOI: 10.1023/A:1026166300914
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1026166300914
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1026166300914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengya Li & Jun Wang & Xiaojing Sun, 2016. "Scenario-based risk framework selection and assessment model development for natural disasters: a case study of typhoon storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2037-2054, February.
    2. E. F. Asbridge & D. Low Choy & B. Mackey & S. Serrao-Neumann & P. Taygfeld & K. Rogers, 2021. "Coastal flood risk within a peri-urban area: Sussex Inlet district, SE Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 999-1026, October.
    3. Christian Geiß & Hannes Taubenböck, 2013. "Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 7-48, August.
    4. Shuo Yang & Xin Liu & Qiang Liu, 2016. "A storm surge projection and disaster risk assessment model for China coastal areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 649-667, October.
    5. Mengya Li & Jun Wang & Xiaojing Sun, 2016. "Scenario-based risk framework selection and assessment model development for natural disasters: a case study of typhoon storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2037-2054, February.
    6. Daminda Solangaarachchi & Amy Griffin & Michael Doherty, 2012. "Social vulnerability in the context of bushfire risk at the urban-bush interface in Sydney: a case study of the Blue Mountains and Ku-ring-gai local council areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1873-1898, November.
    7. Yan Fang & Jie Yin & Bihu Wu, 2016. "Flooding risk assessment of coastal tourist attractions affected by sea level rise and storm surge: a case study in Zhejiang Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 611-624, October.
    8. Yong Shi, 2012. "Risk analysis of rainstorm waterlogging on residences in Shanghai based on scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 677-689, June.
    9. Christine Shepard & Vera Agostini & Ben Gilmer & Tashya Allen & Jeff Stone & William Brooks & Michael Beck, 2012. "Assessing future risk: quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 727-745, January.
    10. Jonathan Nott, 2005. "Letter to the Editor: Comment on the Paper ‘Quantifying Storm Tide Risk in Cairns’ by Ken Granger," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(3), pages 375-379, March.
    11. Qiwei Yu & Alexis K. H. Lau & Kang T. Tsang & Jimmy C. H. Fung, 2018. "Human damage assessments of coastal flooding for Hong Kong and the Pearl River Delta due to climate change-related sea level rise in the twenty-first century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1011-1038, June.
    12. Yong Shi & Chun Shi & Shi-Yuan Xu & A-Li Sun & Jun Wang, 2010. "Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 259-272, May.
    13. Geraldine Li, 2009. "Tropical cyclone risk perceptions in Darwin, Australia: a comparison of different residential groups," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 365-382, March.
    14. Jimei Li & Yunhui Wang & An Chen & Guanghui Wang & Xiaohui Yao & Tongtong Wang, 2023. "Construction and empirical testing of comprehensive risk evaluation methods from a multi-dimensional risk matrix perspective: taking specific types of natural disasters risk in China as an example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1245-1271, June.
    15. Zhuoqun Gao & R. Richard Geddes & Tao Ma, 2020. "Direct and Indirect Economic Losses Using Typhoon-Flood Disaster Analysis: An Application to Guangdong Province, China," Sustainability, MDPI, vol. 12(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:30:y:2003:i:2:p:165-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.