IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v145y2017i3d10.1007_s10584-017-2091-0.html
   My bibliography  Save this article

Climate variability of heat wave and projection of warming scenario in Taiwan

Author

Listed:
  • Chuan-Yao Lin

    (Academia Sinica)

  • Yi-Yun Chien

    (Academia Sinica)

  • Chiung-Jui Su

    (Academia Sinica)

  • Mien-Tze Kueh

    (Academia Sinica)

  • Shih-Chun Lung

    (Academia Sinica)

Abstract

This study examined the climate variability of heat wave (HW) according to air temperature and relative humidity to determine trends of variation and stress threshold in three major cities of Taiwan, Taipei (TP), Taichung (TC), and Kaohsiung (KH), in the past four decades (1971–2010). According to the data availability, the wet-bulb globe temperature (WBGT) heat stress for the three studied cities was also calculated for the past (2003–2012) and simulated under the future warming scenario for the end of this century (2075–2099) using ECHAM5/MPIOM-WRF (ECW) dynamic downscaling 5-km resolution. Analysis showed that past decade (2001–2010) saw increase not only in the number of HW days in all three cities but also in the duration of each HW event in TP and KH. Simulation results revealed that ECW well captures the characteristics of data distribution in these three cities during 2003–2012. Under the A1B projection, ECW yielded higher WBGT in all three cities for 2075–2099. The WBGT in TP indicated that the heat stress for 50% of the days in July and August by 2075–2099 will be at danger level (WBGT ≥ 31 °C). Even the median of WBGT in TC and KH (30.91 and 30.88 °C, respectively) are close to 31 °C. Hence, the heat stress in all three cities will either exceed or approach the danger level by the end of this century. Such projection under the global warming trend would necessitate adaptation and mitigation, and the huge impact of dangerous heat stress on public health merits urgent attention for Taiwan.

Suggested Citation

  • Chuan-Yao Lin & Yi-Yun Chien & Chiung-Jui Su & Mien-Tze Kueh & Shih-Chun Lung, 2017. "Climate variability of heat wave and projection of warming scenario in Taiwan," Climatic Change, Springer, vol. 145(3), pages 305-320, December.
  • Handle: RePEc:spr:climat:v:145:y:2017:i:3:d:10.1007_s10584-017-2091-0
    DOI: 10.1007/s10584-017-2091-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2091-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2091-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karen Smoyer-Tomic & Robyn Kuhn & Alana Hudson, 2003. "Heat Wave Hazards: An Overview of Heat Wave Impacts in Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 465-486, March.
    2. Tiffany Smith & Benjamin Zaitchik & Julia Gohlke, 2013. "Heat waves in the United States: definitions, patterns and trends," Climatic Change, Springer, vol. 118(3), pages 811-825, June.
    3. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi Chen & Ning Li & Jiawei Liu & Zhengtao Zhang & Yuan Liu, 2019. "Global Heat Wave Hazard Considering Humidity Effects during the 21st Century," IJERPH, MDPI, vol. 16(9), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanxu Liu & Shuangshuang Li & Yanglin Wang & Tian Zhang & Jian Peng & Tianyi Li, 2015. "Identification of multiple climatic extremes in metropolis: a comparison of Guangzhou and Shenzhen, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 939-953, November.
    2. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    3. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    4. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    5. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    6. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    7. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    8. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    9. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    10. Nicholas A. Mailloux & Colleen P. Henegan & Dorothy Lsoto & Kristen P. Patterson & Paul C. West & Jonathan A. Foley & Jonathan A. Patz, 2021. "Climate Solutions Double as Health Interventions," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    11. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    12. Shinji Otani & Satomi Funaki Ishizu & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2021. "The Effect of Minimum and Maximum Air Temperatures in the Summer on Heat Stroke in Japan: A Time-Stratified Case-Crossover Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    13. Neha Sinha, 2012. "Climate Change Issues and Global Negotiations," Insight on Africa, , vol. 4(1), pages 35-57, January.
    14. Zhihui Liu & Yongna Meng & Hao Xiang & Yuanan Lu & Suyang Liu, 2020. "Association of Short-Term Exposure to Meteorological Factors and Risk of Hand, Foot, and Mouth Disease: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    15. Rachel Lowe & Markel García-Díez & Joan Ballester & James Creswick & Jean-Marie Robine & François R. Herrmann & Xavier Rodó, 2016. "Evaluation of an Early-Warning System for Heat Wave-Related Mortality in Europe: Implications for Sub-seasonal to Seasonal Forecasting and Climate Services," IJERPH, MDPI, vol. 13(2), pages 1-13, February.
    16. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    17. V. Savo & K. E. Kohfeld & J. Sillmann & C. Morton & J. Bailey & A. S. Haslerud & C. Le Quéré & D. Lepofsky, 2024. "Using human observations with instrument-based metrics to understand changing rainfall patterns," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Department of Economics Working Papers 2019-04, Department of Economics, Williams College.
    19. Hu, Saiquan & Jia, Xiao & Zhang, Xiaojin & Zheng, Xiaoying & Zhu, Junming, 2017. "How political ideology affects climate perception: Moderation effects of time orientation and knowledge," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 124-131.
    20. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2021. "Towards Understanding Interactions between Sustainable Development Goals: The Role of Climate-Well-Being Linkages. Experiences of EU Countries," Energies, MDPI, vol. 14(7), pages 1-20, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:145:y:2017:i:3:d:10.1007_s10584-017-2091-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.