IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5533-d274108.html
   My bibliography  Save this article

Quantitative Assessment of Agricultural Drought Risk in Southeast Gansu Province, Northwest China

Author

Listed:
  • Zhaoqi Zeng

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wenxiang Wu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing 100101, China)

  • Zhaolei Li

    (National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China)

  • Yang Zhou

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Han Huang

    (School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)

Abstract

The sector that suffers the most directly from drought is agriculture, and drought is expected to become more serious in the context of global warming. Effectively evaluating the agricultural drought risk is fundamental to establishing present water resource management and guaranteeing food security. Therefore, southeast Gansu province was selected for this study as a typical region for which to analyze drought trends and assess agricultural drought risk. Trends for the period from 1967 to 2018 were analyzed at 21 locations by using the Mann–Kendall method, and drought was quantified by using the Standardized Precipitation Evapotranspiration Index (SPEI). Spatial characteristics of the agricultural drought risk that emphasized the combined role of hazards and vulnerability were investigated at a 1-km grid scale. Results showed that the annual SPEI exhibited a nonsignificant increasing trend from 1967 to 1990 but that after 1990, the SPEI showed a steep downward trend of 0.1 per decade. The drying trend from 1990 to 2018 was mainly attributed to a significant increase in the reference evapotranspiration. Approximately 16.1% of the agricultural areas are exposed to an extremely high risk and 42.2% are exposed to high risk of drought. Moreover, 56.7% of the extremely high-risk agricultural areas are located in the Longnan region, which strongly suggests that more attention must be paid to preparedness for and mitigation of drought in the Longnan region. This study offers a scientific approach to evaluating the risk of agricultural drought in dry agricultural regions.

Suggested Citation

  • Zhaoqi Zeng & Wenxiang Wu & Zhaolei Li & Yang Zhou & Han Huang, 2019. "Quantitative Assessment of Agricultural Drought Risk in Southeast Gansu Province, Northwest China," Sustainability, MDPI, vol. 11(19), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5533-:d:274108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. Adger & P. Kelly, 1999. "Social Vulnerability to Climate Change and the Architecture of Entitlements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 4(3), pages 253-266, September.
    2. Bin He & Jianjun Wu & Aifeng Lü & Xuefeng Cui & Lei Zhou & Ming Liu & Lin Zhao, 2013. "Quantitative assessment and spatial characteristic analysis of agricultural drought risk in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 155-166, March.
    3. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    4. Neil Adger, W., 1999. "Social Vulnerability to Climate Change and Extremes in Coastal Vietnam," World Development, Elsevier, vol. 27(2), pages 249-269, February.
    5. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    6. Olga Wilhelmi & Donald Wilhite, 2002. "Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(1), pages 37-58, January.
    7. Luxin Zhai & Qi Feng, 2009. "Spatial and temporal pattern of precipitation and drought in Gansu Province, Northwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 1-24, April.
    8. Arega Alene & V. Manyong, 2007. "The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: an endogenous switching regression analysis," Empirical Economics, Springer, vol. 32(1), pages 141-159, April.
    9. Ze-Xin Fan & Axel Thomas, 2013. "Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961–2004," Climatic Change, Springer, vol. 116(2), pages 309-325, January.
    10. Jianjun Wu & Bin He & Aifeng Lü & Lei Zhou & Ming Liu & Lin Zhao, 2011. "Quantitative assessment and spatial characteristics analysis of agricultural drought vulnerability in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 785-801, March.
    11. Esha Zaveri & David Lobell, 2019. "The role of irrigation in changing wheat yields and heat sensitivity in India," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    12. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    13. F. Sönmez & Ali Kömüscü & Ayhan Erkan & Ertan Turgu, 2005. "An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(2), pages 243-264, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongpeng Guo & Jia Chen & Chulin Pan, 2021. "Assessment on Agricultural Drought Vulnerability and Spatial Heterogeneity Study in China," IJERPH, MDPI, vol. 18(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Vijaya Kumar & Mohammed Osman & P. K. Mishra, 2019. "Development and application of a new drought severity index for categorizing drought-prone areas: a case study of undivided Andhra Pradesh state, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 793-812, June.
    2. Kiumars Zarafshani & Lida Sharafi & Hossein Azadi & Steven Van Passel, 2016. "Vulnerability Assessment Models to Drought: Toward a Conceptual Framework," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    3. Ji Eun Kim & Jisoo Yu & Jae-Hee Ryu & Joo-Heon Lee & Tae-Woong Kim, 2021. "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 707-724, October.
    4. Saowanit Prabnakorn & Shreedhar Maskey & F. X. Suryadi & Charlotte Fraiture, 2019. "Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun River Basin in Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 891-911, June.
    5. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    6. Huifang Sun & Yaoguo Dang & Wenxin Mao, 2019. "Identifying key factors of regional agricultural drought vulnerability using a panel data grey combined method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 621-642, September.
    7. Kerstin Krellenberg & Juliane Welz, 2017. "Assessing Urban Vulnerability in the Context of Flood and Heat Hazard: Pathways and Challenges for Indicator-Based Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(2), pages 709-731, June.
    8. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    9. Jamal Uddin Khan & A. K. M. Saiful Islam & Mohan K. Das & Khaled Mohammed & Sujit Kumar Bala & G. M. Tarekul Islam, 2020. "Future changes in meteorological drought characteristics over Bangladesh projected by the CMIP5 multi-model ensemble," Climatic Change, Springer, vol. 162(2), pages 667-685, September.
    10. Bin He & Jianjun Wu & Aifeng Lü & Xuefeng Cui & Lei Zhou & Ming Liu & Lin Zhao, 2013. "Quantitative assessment and spatial characteristic analysis of agricultural drought risk in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 155-166, March.
    11. Jones, Lindsey & d'Errico, Marco, 2019. "Whose resilience matters? Like-for-like comparison of objective and subjective evaluations of resilience," World Development, Elsevier, vol. 124(C), pages 1-1.
    12. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.
    13. Lina Eklund & Jonathan Seaquist, 2015. "Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 421-441, March.
    14. Delphine Boutin, 2014. "Climate vulnerability, communities' resilience and child labour," Revue d'économie politique, Dalloz, vol. 124(4), pages 625-638.
    15. H.M. Tuihedur Rahman & Gordon M. Hickey, 2020. "An Analytical Framework for Assessing Context-Specific Rural Livelihood Vulnerability," Sustainability, MDPI, vol. 12(14), pages 1-26, July.
    16. Barnett, Jon, 2001. "Adapting to Climate Change in Pacific Island Countries: The Problem of Uncertainty," World Development, Elsevier, vol. 29(6), pages 977-993, June.
    17. Jia Xu & Makoto Takahashi, 2021. "Progressing vulnerability of the immigrants in an urbanizing village in coastal China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8012-8026, May.
    18. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    19. Chiarity Zetem Chiambah & Cordelia G. Kometa, 2022. "Rainfall Variability and Food Crop Vulnerability in Ndu Sub-Division, North West Region of Cameroon," Journal of Geography and Geology, Canadian Center of Science and Education, vol. 11(3), pages 1-39, September.
    20. Sanjit Maiti & Sujeet Jha & Sanchita Garai & Arindam Nag & R. Chakravarty & K. Kadian & B. Chandel & K. Datta & R. Upadhyay, 2015. "Assessment of social vulnerability to climate change in the eastern coast of India," Climatic Change, Springer, vol. 131(2), pages 287-306, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5533-:d:274108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.