IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i9p1338-d1462222.html
   My bibliography  Save this article

Ecological Risk Assessment of Saltwater Intrusion and Urban Ecosystem Management in Shenzhen City

Author

Listed:
  • Rencai Dong

    (Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China
    State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Yue Cai

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Xueye Chen

    (Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China)

  • Cunjin Wang

    (Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China)

  • Anxin Lian

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

Abstract

With continued sea level rise and over-exploitation, saline water extends farther inland, causing changes in soil salinity and water quality and leading to permanent land salinization and ecosystem damage. Saltwater intrusion (SWI), causing numerous ecosystem problems and disasters, brings risk to urban ecosystems in coastal cities. Ecological risk, in the Greater Bay Area in China, should be assessed based on the effect of SWI status on ecosystem health. In this study, we built a new ecological risk-assessment model based on the geographic information system (GIS) technique and spatial data. At the conceptual level, four main stressors were identified based on literature reading and fieldwork. Four stress factors (SFs) were thoroughly investigated, namely, SF1: the intensity gradient immersed in saltwater; SF2: the mountain phreatic water supply; SF3: the salinity tolerance of urban greenbelt vegetation; and SF4: the supply capacity of irrigation water to suppress saline water. After a comprehensive evaluation using GIS and the analytic hierarchy process (AHP), we mapped and assessed the ecological risk level of the urban greenbelt for the SWI. Our results showed that the area of urban green space affected by the SWI was approximately 49.31 km 2 , almost 12.05%. Ecological risk was sorted into five ranks: (1) very low risk 47.53%, (2) low risk 26.29%, (3) medium risk 22.92%, (4) high risk 2.45%, and (5) very high risk (0.8%). The ecological infrastructure of sponges should include freshwater conservation in coastal cities, and more attention should be paid to fresh groundwater discharge from coastal ecosystems in Shenzhen.

Suggested Citation

  • Rencai Dong & Yue Cai & Xueye Chen & Cunjin Wang & Anxin Lian, 2024. "Ecological Risk Assessment of Saltwater Intrusion and Urban Ecosystem Management in Shenzhen City," Land, MDPI, vol. 13(9), pages 1-16, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1338-:d:1462222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/9/1338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/9/1338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Huang & G. Wang & Y. Yang & C. Wang, 2014. "Overexploitation status of groundwater and induced geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 727-741, September.
    2. Scott Jasechko & Debra Perrone & Hansjörg Seybold & Ying Fan & James W. Kirchner, 2020. "Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadezhda Shmeleva & Tatyana Tolstykh & Viktoria Krasnobaeva & Diana Boboshko & Denis Lazarenko, 2024. "Network Integration as a Tool for Sustainable Business Development," Sustainability, MDPI, vol. 16(21), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merhawi GebreEgziabher & Scott Jasechko & Debra Perrone, 2022. "Widespread and increased drilling of wells into fossil aquifers in the USA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Wang, Shuping & Tan, Qian & Zhang, Tianyuan & Zhang, Tong, 2022. "Water management policy analysis: Insight from a calibration-based inexact programming method," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Chong Sheng & Jiu Jimmy Jiao & Xin Luo & Jinchao Zuo & Lei Jia & Jinghe Cao, 2023. "Offshore freshened groundwater in the Pearl River estuary and shelf as a significant water resource," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.
    5. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    6. Jina Yin & Frank T.-C. Tsai & Chunhui Lu, 2022. "Bi-objective Extraction-injection Optimization Modeling for Saltwater Intrusion Control Considering Surrogate Model Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6017-6042, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1338-:d:1462222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.