IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i3p785-800.html
   My bibliography  Save this article

A Comparative Study of Flexibility in Water Allocation in the Context of Hydrologic Variability

Author

Listed:
  • Hang Zheng
  • Clive Lyle
  • Zhongjing Wang

Abstract

River flow that is characterized by variability requires commensurate flexibility in allocating water so that water users are able to plan their activities and respond accordingly. An indicator-based assessment method is proposed in this study to evaluate the flexibility of water allocation, based on a concept that a flexible water allocation regime provides greater opportunity for users to freely decide individual water use and leads to more variability and diversity for water consumption among the users. This is demonstrated by using historical water-use data and applying the assessment method in three river basins with different water allocation regimes. These allocation regimes include the seasonal and volumetric water allocation system in the Yellow River of China, duration-based water allocation in Northwestern China, and capacity sharing in southern Queensland in the northern Murray Darling Basin of Australia. Historical water-use variability and diversity are defined and assessed. The result shows that water allocation flexibility varies across the different water entitlement regimes. Duration-based water allocation, a type of allocation that provides the highest degree of water-use autonomy, is ranked as the most flexible regime. Seasonal water allocation, which has the highest level of centralized regulation, shows the lowest flexibility. The proposed indicator based assessment method would be useful for evaluating the flexibility of policy options for water allocation. This could be helpful for improving the capability of water allocation regimes to cope with the changing environment and improving the effectiveness of water allocation systems. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Hang Zheng & Clive Lyle & Zhongjing Wang, 2014. "A Comparative Study of Flexibility in Water Allocation in the Context of Hydrologic Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 785-800, February.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:3:p:785-800
    DOI: 10.1007/s11269-014-0515-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0515-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0515-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chun Xia & Claudia Pahl-Wostl, 2012. "The Development of Water Allocation Management in The Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3395-3414, September.
    2. Hang Zheng & Zhongjing Wang & Siyi Hu & Yongping Wei, 2012. "A Comparative Study of the Performance of Public Water Rights Allocation in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1107-1123, March.
    3. Marreco, Juliana de Moraes & Carpio, Lucio Guido Tapia, 2006. "Flexibility valuation in the Brazilian power system: A real options approach," Energy Policy, Elsevier, vol. 34(18), pages 3749-3756, December.
    4. Shuiabi, Eyas & Thomson, Vince & Bhuiyan, Nadia, 2005. "Entropy as a measure of operational flexibility," European Journal of Operational Research, Elsevier, vol. 165(3), pages 696-707, September.
    5. Weiwei Shao & Dawen Yang & Heping Hu & Kenji Sanbongi, 2009. "Water Resources Allocation Considering the Water Use Flexible Limit to Water Shortage—A Case Study in the Yellow River Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 869-880, March.
    6. D. Kilgour & Ariel Dinar, 2001. "Flexible Water Sharing within an International River Basin," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(1), pages 43-60, January.
    7. Keighobad Jafarzadegan & Armaghan Abed-Elmdoust & Reza Kerachian, 2013. "A Fuzzy Variable Least Core Game for Inter-basin Water Resources Allocation Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3247-3260, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongjing Wang & Jinfeng Zhu & Hang Zheng, 2015. "Improvement of Duration-Based Water Rights Management with Optimal Water Intake On/Off Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2927-2945, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhisong Chen & Huimin Wang & Xiangtong Qi, 2013. "Pricing and Water Resource Allocation Scheme for the South-to-North Water Diversion Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1457-1472, March.
    2. KLAUS ABBINK & MOLLER, Lars Christian & SARAH O'HARA, 2005. "The Syr Darya River Conflict: An Experimental Case Study," Discussion Papers 2005-14, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    3. Ansink, Erik & Gengenbach, Michael & Weikard, Hans-Peter, 2012. "River Sharing and Water Trade," Climate Change and Sustainable Development 122860, Fondazione Eni Enrico Mattei (FEEM).
    4. Seebacher, Gottfried & Winkler, Herwig, 2014. "Evaluating flexibility in discrete manufacturing based on performance and efficiency," International Journal of Production Economics, Elsevier, vol. 153(C), pages 340-351.
    5. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    6. Benjamin Ouvrard & Stefan Ambec & Arnaud Reynaud & Stéphane Cezera & Murudaiah Shivamurthy, 2022. "Sharing rules for a common-pool resource in a lab experiment," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(3), pages 605-635, October.
    7. Enrico Teich & Thorsten Claus, 2017. "Measurement of Load and Capacity Flexibility in Manufacturing," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(4), pages 291-302, December.
    8. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    9. Klaus Abbink & Lars Moller & Sarah O’Hara, 2010. "Sources of Mistrust: An Experimental Case Study of a Central Asian Water Conflict," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(2), pages 283-318, February.
    10. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    11. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    12. Osorio, Antonio, 2014. "A Sequential Allocation Problem: The Asymptotic Distribution of Resources," MPRA Paper 56690, University Library of Munich, Germany.
    13. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    14. Madlener, Reinhard & Stoverink, Simon, 2012. "Power plant investments in the Turkish electricity sector: A real options approach taking into account market liberalization," Applied Energy, Elsevier, vol. 97(C), pages 124-134.
    15. Ambec, S. & Ehlers, L., 2006. "Sharing a river among satiable countries," Working Papers 200605, Grenoble Applied Economics Laboratory (GAEL).
    16. Kai Zhang & Haishu Lu & Bin Wang, 2024. "Benefit Distribution Mechanism of a Cooperative Alliance for Basin Water Resources from the Perspective of Cooperative Game Theory," Sustainability, MDPI, vol. 16(16), pages 1-33, August.
    17. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    18. Jha, Pradeep K. & Jha, Rakhi & Datt, Rajul & Guha, Sujoy K., 2011. "Entropy in good manufacturing system: Tool for quality assurance," European Journal of Operational Research, Elsevier, vol. 211(3), pages 658-665, June.
    19. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Ambec, Stefan & Dinar, Ariel, 2010. "Hot Stuff: Would Climate Change Alter Transboundary Water Sharing Treaties?," LERNA Working Papers 10.15.321, LERNA, University of Toulouse.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:3:p:785-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.