IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i1p545-561.html
   My bibliography  Save this article

Planning and assessing the effectiveness of traditional silvicultural treatments for mitigating wildfire hazard in pine woodlands of Greece

Author

Listed:
  • Th. Zagas
  • D. Raptis
  • D. Zagas
  • D. Karamanolis

Abstract

In the current paper, an attempt is being made to present and assess the effectiveness of traditional silvicultural treatments in mitigating wildfire initiation and spread, in a typical Mediterranean forest which is located in Vartholomio, southern Greece. The proposed silvicultural interventions combine thinning and pruning, in various levels of intensity at strategic points creating shaded fuelbreaks, in order to successfully support wildfire suppression actions. NEXUS software was applied in an effort to assess the effectiveness of the proposed silvicultural treatments. The results clearly showed that conventional silvicultural treatments may drastically reduce critical characteristics of a potential wildfire. The number of historic ignitions and the flammability of the forest species reveal the vulnerability of the specific forest against wildfire occurrences. On the contrary, its protective role against desertification is of paramount importance; thus, the minimization of wildfire threat constitutes a priority action. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Th. Zagas & D. Raptis & D. Zagas & D. Karamanolis, 2013. "Planning and assessing the effectiveness of traditional silvicultural treatments for mitigating wildfire hazard in pine woodlands of Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 545-561, January.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:545-561
    DOI: 10.1007/s11069-012-0380-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0380-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0380-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huggett Jr., Robert J. & Abt, Karen L. & Shepperd, Wayne, 2008. "Efficacy of mechanical fuel treatments for reducing wildfire hazard," Forest Policy and Economics, Elsevier, vol. 10(6), pages 408-414, August.
    2. Brigitte Leblon, 2005. "Monitoring Forest Fire Danger with Remote Sensing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(3), pages 343-359, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    2. Prestemon, Jeffrey P. & Abt, Karen L. & Barbour, R. James, 2012. "Quantifying the net economic benefits of mechanical wildfire hazard treatments on timberlands of the western United States," Forest Policy and Economics, Elsevier, vol. 21(C), pages 44-53.
    3. Jaehoon Jung & Changjae Kim & Shanmuganathan Jayakumar & Seongsam Kim & Soohee Han & Dong Kim & Joon Heo, 2013. "Forest fire risk mapping of Kolli Hills, India, considering subjectivity and inconsistency issues," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2129-2146, February.
    4. Bagdon, Benjamin A. & Huang, Ching-Hsun & Dewhurst, Stephen, 2016. "Managing for ecosystem services in northern Arizona ponderosa pine forests using a novel simulation-to-optimization methodology," Ecological Modelling, Elsevier, vol. 324(C), pages 11-27.
    5. Faisal, Abdullah Al & Kafy, Abdulla - Al & Afroz, Farzana & Rahaman, Zullyadini A., 2023. "Exploring and forecasting spatial and temporal patterns of fire hazard risk in Nepal's tiger conservation zones," Ecological Modelling, Elsevier, vol. 476(C).
    6. Bhuiyan, Tanveer Hossain & Moseley, Maxwell C. & Medal, Hugh R. & Rashidi, Eghbal & Grala, Robert K., 2019. "A stochastic programming model with endogenous uncertainty for incentivizing fuel reduction treatment under uncertain landowner behavior," European Journal of Operational Research, Elsevier, vol. 277(2), pages 699-718.
    7. Amjaad T. Altakhaineh & Rula Alrawashdeh & Jiafeng Zhou, 2024. "Machine Learning-Aided Dual-Function Microfluidic SIW Sensor Antenna for Frost and Wildfire Detection Applications," Energies, MDPI, vol. 17(20), pages 1-27, October.
    8. Hamed Adab & Kasturi Kanniah & Karim Solaimani, 2013. "Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1723-1743, February.
    9. Chijoo Lee & Hyungjun Yang, 2018. "A system to detect potential fires using a thermographic camera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 511-523, May.
    10. Ryer M. Becker & Robert F. Keefe, 2020. "Prediction of Fuel Loading Following Mastication Treatments in Forest Stands in North Idaho, USA," Sustainability, MDPI, vol. 12(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:545-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.