IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v66y2013i2p1189-1203.html
   My bibliography  Save this article

Population vulnerability assessment based on scenario simulation of rainstorm-induced waterlogging: a case study of Xuhui District, Shanghai City

Author

Listed:
  • Yong Shi

Abstract

Waterlogging is one of the most serious hazards in cities. People are the core of the human social system and the main group affected by disasters. This research introduces a method of scenario simulation which provides a basis for the accurate measurement of exposure to waterlogging. Then based on the concept and structure of vulnerability, representative indicators are selected to develop an indicator system based on objective weights derived from principal components analysis. The method is then used to conduct a population vulnerability assessment in Xuhui District of Shanghai city based on scenario simulation of rainstorm-induced waterlogging over a 50-year period. The final assessment results show that the population vulnerability is greatest for Tianlin Street, Lingyun Street, Changqiao Street, Fenglin Street, and Caohejing Street, while Tianping Street, Xujiahui Street, and Xietulu Street have medium levels of vulnerability. Hongmei Road Street, Healthy Village Street, Longhua Street, and Hunan Road Street have low levels of vulnerability, and Huajing Town is the area with the lowest population vulnerability. The results provide both necessary information and guidance for the government to improve the flood management. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Yong Shi, 2013. "Population vulnerability assessment based on scenario simulation of rainstorm-induced waterlogging: a case study of Xuhui District, Shanghai City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1189-1203, March.
  • Handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:1189-1203
    DOI: 10.1007/s11069-012-0544-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0544-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0544-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yarnal, Brent, 2007. "Vulnerability and all that jazz: Addressing vulnerability in New Orleans after Hurricane Katrina," Technology in Society, Elsevier, vol. 29(2), pages 249-255.
    2. Yong Shi & Chun Shi & Shi-Yuan Xu & A-Li Sun & Jun Wang, 2010. "Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 259-272, May.
    3. Alice Fothergill & Lori Peek, 2004. "Poverty and Disasters in the United States: A Review of Recent Sociological Findings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 89-110, May.
    4. Dagmar Schröter & Colin Polsky & Anthony Patt, 2005. "Assessing vulnerabilities to the effects of global change: an eight step approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 10(4), pages 573-595, October.
    5. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    2. Yiche Wang & Hai Li & Yong Shi & Qian Yao, 2022. "A Study on Spatial Accessibility of the Urban Stadium Emergency Response under the Flood Disaster Scenario," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    3. Yu Duan & Junnan Xiong & Weiming Cheng & Nan Wang & Yi Li & Yufeng He & Jun Liu & Wen He & Gang Yang, 2022. "Flood vulnerability assessment using the triangular fuzzy number-based analytic hierarchy process and support vector machine model for the Belt and Road region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 269-294, January.
    4. Yuanyuan He & Zaiwu Gong, 2014. "China’s regional rainstorm floods disaster evaluation based on grey incidence multiple-attribute decision model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1125-1144, March.
    5. Haihong Yuan & Xiaolu Gao & Wei Qi, 2019. "Fine-Scale Spatiotemporal Analysis of Population Vulnerability to Earthquake Disasters: Theoretical Models and Application to Cities," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    6. Tzu-Ling Chen & Larry Paris, 2022. "Identifying key environmental and building features affecting the outcome of a seismic event: a case study of the “921” earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2627-2647, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chongming Wang & Brent Yarnal, 2012. "The vulnerability of the elderly to hurricane hazards in Sarasota, Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 349-373, September.
    2. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    3. Karen E Engel, 2016. "Talcahuano, Chile, in the wake of the 2010 disaster: A vulnerable middle?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1057-1081, January.
    4. Emily Fucile-Sanchez & Meri Davlasheridze, 2020. "Adjustments of Socially Vulnerable Populations in Galveston County, Texas USA Following Hurricane Ike," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    5. Elizabeth Jordan & Amy Javernick-Will & Kathleen Tierney, 2016. "Post-tsunami recovery in Tamil Nadu, India: combined social and infrastructural outcomes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1327-1347, November.
    6. Zhe Huang & Emily Ying Yang Chan & Chi Shing Wong & Benny Chung Ying Zee, 2021. "Clustering of Socioeconomic Data in Hong Kong for Planning Better Community Health Protection," IJERPH, MDPI, vol. 18(23), pages 1-21, November.
    7. Joseph Karanja & Lawrence M. Kiage, 2022. "Scale implications and evolution of a social vulnerability index in Atlanta, Georgia, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 789-812, August.
    8. Ann-Margaret Esnard & Alka Sapat & Diana Mitsova, 2011. "An index of relative displacement risk to hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 833-859, November.
    9. Meldrum, James R. & Champ, Patricia A. & Brenkert-Smith, Hannah & Barth, Christopher M. & McConnell, Abby E. & Wagner, Carolyn & Donovan, Colleen, 2024. "Rethinking cost-share programs in consideration of economic equity: A case study of wildfire risk mitigation assistance for private landowners," Ecological Economics, Elsevier, vol. 216(C).
    10. Suzanne Phibbs & Christine Kenney & Graciela Rivera-Munoz & Thomas J. Huggins & Christina Severinsen & Bruce Curtis, 2018. "The Inverse Response Law: Theory and Relevance to the Aftermath of Disasters," IJERPH, MDPI, vol. 15(5), pages 1-25, May.
    11. Kerstin Krellenberg & Juliane Welz, 2017. "Assessing Urban Vulnerability in the Context of Flood and Heat Hazard: Pathways and Challenges for Indicator-Based Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(2), pages 709-731, June.
    12. A.-M. Esnard & B. S. Lai & C. Wyczalkowski & N. Malmin & H. J. Shah, 2018. "School vulnerability to disaster: examination of school closure, demographic, and exposure factors in Hurricane Ike’s wind swath," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 513-535, January.
    13. Jungmin Lim & Mark Skidmore, 2019. "Flood Fatalities in the United States: The Roles of Socioeconomic Factors and the National Flood Insurance Program," Southern Economic Journal, John Wiley & Sons, vol. 85(4), pages 1032-1057, April.
    14. Richard Bernknopf & Paul Amos, 2014. "Measuring earthquake risk concentration for hazard mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2163-2192, December.
    15. Yarnal, Brent, 2007. "Vulnerability and all that jazz: Addressing vulnerability in New Orleans after Hurricane Katrina," Technology in Society, Elsevier, vol. 29(2), pages 249-255.
    16. Yago Martín & Marcos Rodrigues Mimbrero & María Zúñiga-Antón, 2017. "Community vulnerability to hazards: introducing local expert knowledge into the equation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 367-386, October.
    17. Eric Tate & Md Asif Rahman & Christopher T. Emrich & Christopher C. Sampson, 2021. "Flood exposure and social vulnerability in the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 435-457, March.
    18. Alejandra Maldonado & Timothy W. Collins & Sara E. Grineski & Jayajit Chakraborty, 2016. "Exposure to Flood Hazards in Miami and Houston: Are Hispanic Immigrants at Greater Risk than Other Social Groups?," IJERPH, MDPI, vol. 13(8), pages 1-20, August.
    19. Elaina J. Sutley & Sara Hamideh, 2020. "Postdisaster Housing Stages: A Markov Chain Approach to Model Sequences and Duration Based on Social Vulnerability," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2675-2695, December.
    20. Elizabeth Fussell & Elizabeth Harris, 2014. "Homeownership and Housing Displacement After Hurricane Katrina Among Low-Income African-American Mothers in New Orleans," Social Science Quarterly, Southwestern Social Science Association, vol. 95(4), pages 1086-1100, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:1189-1203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.