IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v60y2012i2p541-565.html
   My bibliography  Save this article

Seismic hazard and site-specific ground motion for typical ports of Gujarat

Author

Listed:
  • Jaykumar Shukla
  • Deepankar Choudhury

Abstract

Economic importance of major ports is well known, and if ports are located in seismically active regions, then site-specific seismic hazard studies are essential to mitigate the seismic risk of the ports. Seismic design of port sites and related structures can be accomplished in three steps that include assessment of regional seismicity, geotechnical hazards, and soil structure interaction analysis. In the present study, site-specific probabilistic seismic hazard analysis is performed to identify the seismic hazard associated with four typical port sites of Gujarat state (bounded by 20°–25.5°N and 68°–75°E) of India viz. Kandla, Mundra, Hazira, and Dahej ports. The primary aim of the study is to develop consistent seismic ground motion for the structures within the four port sites for different three levels of ground shaking, i.e., operating level earthquake (72 years return period), contingency level earthquake (CLE) (475 year return period), and maximum considered earthquake (2,475 year return period). The geotechnical characterization for each port site is carried out using available geotechnical data. Shear wave velocities of the soil profile are estimated from SPT blow counts using various empirical formulae. Seismicity of the Gujarat region is modeled through delineating the 40 fault sources based on the seismotectonic setting. The Gujarat state is divided into three regions, i.e., Kachchh, Saurashtra, and Mainland Gujarat, and regional recurrence relations are assigned in the form of Gutenberg-Richter parameters in order to calculate seismic hazard associated with each port site. The horizontal component of ground acceleration for three levels of ground shaking is estimated by using different ground motion attenuation relations (GMAR) including one country-specific GMAR for Peninsular India. Uncertainty in seismic hazard computations is handled by using logic tree approach to develop uniform hazard spectra for 5% damping which are consistent with the specified three levels of ground shaking. Using recorded acceleration time history of Bhuj 2001 earthquake as the input time motion, synthetic time histories are generated to match the developed designed response spectra to study site-specific responses of port sites during different levels of ground shaking. It is observed that the Mundra and Kandla port sites are most vulnerable sites for seismic hazard as estimated CLE ground motion is in order of 0.79 and 0.48 g for Mundra and Kandla port sites, respectively. Hazira and Dahej port sites have comparatively less hazard with estimated CLE ground motion of 0.17 and 0.11 g, respectively. The ground amplification factor is observed at all sites which ranges from 1.3 to 2.0 for the frequency range of 1.0–2.7 Hz. The obtained spectral accelerations for the three levels of ground motions and obtained transfer functions for each port sites are compared with provisions made in Indian seismic code IS:1893-Part 1 ( 2002 ). The outcome of present study is recommended for further performance-based design to evaluate the seismic response of the port structures with respect to various performance levels. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Jaykumar Shukla & Deepankar Choudhury, 2012. "Seismic hazard and site-specific ground motion for typical ports of Gujarat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 541-565, January.
  • Handle: RePEc:spr:nathaz:v:60:y:2012:i:2:p:541-565
    DOI: 10.1007/s11069-011-0042-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-0042-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-0042-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sumedh Mhaske & Deepankar Choudhury, 2011. "Geospatial contour mapping of shear wave velocity for Mumbai city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 317-327, October.
    2. P. Anbazhagan & J. Vinod & T. Sitharam, 2009. "Probabilistic seismic hazard analysis for Bangalore," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 145-166, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avik Paul & Suvam Gupta & Sima Ghosh & Deepankar Choudhury, 2020. "Probabilistic assessment and study of earthquake recurrence models for entire Northeast region of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 15-45, May.
    2. P. Anbazhagan & Athul Prabhakaran & H. Madhura & Sayed S. R. Moustafa & Nassir S. N. Al-Arifi, 2017. "Selection of representative shear modulus reduction and damping curves for rock, gravel and sand sites from the KiK-Net downhole array," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1741-1768, September.
    3. A. Singh & N. Annam & Santosh Kumar, 2014. "Assessment of predominant frequencies using ambient vibration in the Kachchh region of western India: implications for earthquake hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1291-1309, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reshma Raskar Phule & Deepankar Choudhury, 2017. "Seismic reliability-based analysis and GIS mapping of cyclic mobility of clayey soils of Mumbai city, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 139-169, January.
    2. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    3. Abhishek Kumar & P. Anbazhagan & T. Sitharam, 2013. "Seismic hazard analysis of Lucknow considering local and active seismic gaps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 327-350, October.
    4. T. Sitharam & K. Vipin, 2011. "Evaluation of spatial variation of peak horizontal acceleration and spectral acceleration for south India: a probabilistic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 639-653, November.
    5. G. Surve & Jyotima Kanaujia & Nitin Sharma, 2021. "Probabilistic seismic hazard assessment studies for Mumbai region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 575-600, May.
    6. K. Vipin & T. Sitharam & S. Kolathayar, 2013. "Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1179-1195, January.
    7. Ade Faisal & Taksiah Majid & Fauziah Ahmad & Felix Tongkul & Syafrina Sari, 2011. "Influence of large dam on seismic hazard in low seismic region of Ulu Padas Area, Northern Borneo," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 237-269, October.
    8. Md. Zillur Rahman & A. S. M. Maksud Kamal & Sumi Siddiqua, 2018. "Near-surface shear wave velocity estimation and V s 30 mapping for Dhaka City, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1687-1715, July.
    9. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    10. Saikat Kuili & Ravi S. Jakka, 2023. "Reliable assessment of seismic site class using stochastic approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2419-2458, September.
    11. Avik Paul & Suvam Gupta & Sima Ghosh & Deepankar Choudhury, 2020. "Probabilistic assessment and study of earthquake recurrence models for entire Northeast region of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 15-45, May.
    12. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    13. Kaustav Chatterjee & Deepankar Choudhury, 2013. "Variations in shear wave velocity and soil site class in Kolkata city using regression and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2057-2082, December.
    14. Asim Bashir & Dhiman Basu, 2018. "Revisiting probabilistic seismic hazard analysis of Gujarat: an assessment of Indian design spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1127-1164, April.
    15. Hing-Ho Tsang & Saman Yaghmaei-Sabegh & P. Anbazhagan & M. Neaz Sheikh, 2011. "A checking method for probabilistic seismic-hazard assessment: case studies on three cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 67-84, July.
    16. Sarika Desai & Deepankar Choudhury, 2014. "Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1873-1898, April.
    17. P. Anbazhagan & Ketan Bajaj & Satyajit Patel, 2015. "Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1163-1195, September.
    18. Chee Tan & Taksiah Majid & Kamar Ariffin & Norazura Bunnori, 2014. "Seismic microzonation for Penang using geospatial contour mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 657-670, September.
    19. K. Vipin & T. Sitharam & P. Anbazhagan, 2010. "Probabilistic evaluation of seismic soil liquefaction potential based on SPT data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 547-560, June.
    20. S. Elayaraja & S. Chandrasekaran & G. Ganapathy, 2015. "Evaluation of seismic hazard and potential of earthquake-induced landslides of the Nilgiris, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1997-2015, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:60:y:2012:i:2:p:541-565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.