IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i3d10.1007_s11069-023-06094-8.html
   My bibliography  Save this article

Reliable assessment of seismic site class using stochastic approaches

Author

Listed:
  • Saikat Kuili

    (IIT Roorkee)

  • Ravi S. Jakka

    (IIT Roorkee)

Abstract

Seismic site classification plays a vital role in quantification of earthquake hazard based on weighted-average shear wave velocity of overlying 30 m soil deposit (Vs30). National Earthquake Hazards Reduction Program states six different seismic site classes, and corresponding limits of Vs30 are pre-assigned. While acquiring shear wave velocity (Vs) through different geotechnical engineering test practices, varying degrees of uncertainty mainly linked to inherent, measurement and transformation uncertainty are naturally adhered into the Vs30 estimation process. These types of uncertainties induce wide variability in the concluding estimate and proliferate the risk of safe and sound decision-making process. This present study aims to address the aforementioned hurdle by implementing stochastic approaches in order to reliably assess seismic site class and hence seismic site response. An approximate method, i.e., First-Order Reliability Method (FORM), and two simulation approaches, i.e., Monte Carlo Simulation and Importance Sampling, have been deployed in this study to obtain the reliable seismic site class which has not been attempted earlier. Field procured measurements from high strain soil test, i.e., Standard Penetration Test, have been utilized to estimate the Vs using multiple well-established transformation models ultimately yielding 324 Vs30 outcomes. This study highlights the data scatter at every step of routine geotechnical investigations commencing from field measurement to data transformation and bestows a novel methodology to reliably assess the seismic site class. Further, statistical variation of the mean Vs30 value has also been performed to depict the trend of stochastic outcomes in response to the extent of accounted uncertainties. This novel study of stochastically quantifying a seismic site class aids to cater the implications of uncertainties and helps to obtain a reliable seismic site response.

Suggested Citation

  • Saikat Kuili & Ravi S. Jakka, 2023. "Reliable assessment of seismic site class using stochastic approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2419-2458, September.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:3:d:10.1007_s11069-023-06094-8
    DOI: 10.1007/s11069-023-06094-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06094-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06094-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaustav Chatterjee & Deepankar Choudhury, 2013. "Variations in shear wave velocity and soil site class in Kolkata city using regression and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2057-2082, December.
    2. Sumedh Mhaske & Deepankar Choudhury, 2011. "Geospatial contour mapping of shear wave velocity for Mumbai city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 317-327, October.
    3. Mithila Verma & R. Singh & B. Bansal, 2014. "Soft sediments and damage pattern: a few case studies from large Indian earthquakes vis-a-vis seismic risk evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1829-1851, December.
    4. Gwo-Fong Lin & Lu-Hsien Chen & Jun-Nan Lai, 2004. "Reliability-Based Delineation of Debris-Flow Deposition Areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(3), pages 395-412, July.
    5. Manisha Sandhu & Dinesh Kumar & S. S. Teotia, 2017. "Estimation of site amplification functions for the National Capital (Delhi) Region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 171-195, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reshma Raskar Phule & Deepankar Choudhury, 2017. "Seismic reliability-based analysis and GIS mapping of cyclic mobility of clayey soils of Mumbai city, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 139-169, January.
    2. Md. Zillur Rahman & A. S. M. Maksud Kamal & Sumi Siddiqua, 2018. "Near-surface shear wave velocity estimation and V s 30 mapping for Dhaka City, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1687-1715, July.
    3. Sarika Desai & Deepankar Choudhury, 2014. "Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1873-1898, April.
    4. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    5. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    6. Kaustav Chatterjee & Deepankar Choudhury, 2013. "Variations in shear wave velocity and soil site class in Kolkata city using regression and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2057-2082, December.
    7. Manisha Sandhu & Babita Sharma & Himanshu Mittal & R. B. S. Yadav & Dinesh Kumar & S. S. Teotia, 2020. "Simulation of strong ground motion due to active Sohna fault in Delhi, National Capital Region (NCR) of India: an implication for imminent plausible seismic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2389-2408, December.
    8. Weichao Yang & De Hu & Xuelian Jiang & Xuebo Dun & Bingtao Hou & Chuanxing Zheng & Caixia Chen & Rong Zhuang, 2022. "Framework for Spatio-Temporal Distribution of Disasters and Influencing Factors: Exploratory Study of Tianjin, China," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    9. Chee Tan & Taksiah Majid & Kamar Ariffin & Norazura Bunnori, 2014. "Seismic microzonation for Penang using geospatial contour mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 657-670, September.
    10. M. L. Burnwal & A. Burman & P. Samui & D. Maity, 2017. "Deterministic strong ground motion study for the Sitamarhi area near Bihar–Nepal region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 237-254, May.
    11. Anup K. Sutar & Mithila Verma & Brijesh K. Bansal & Ajeet P. Pandey, 2020. "Simulation of strong ground motion for a potential Mw7.3 earthquake in Kopili fault zone, northeast India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 437-457, October.
    12. Jaykumar Shukla & Deepankar Choudhury, 2012. "Seismic hazard and site-specific ground motion for typical ports of Gujarat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 541-565, January.
    13. Anjali Sharma & Renu Yadav & Dinesh Kumar & Ajay Paul & S. S. Teotia, 2021. "Estimation of site response functions for the central seismic gap of Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1899-1933, November.
    14. Karma Tempa & Raju Sarkar & Abhirup Dikshit & Biswajeet Pradhan & Armando Lucio Simonelli & Saroj Acharya & Abdullah M. Alamri, 2020. "Parametric Study of Local Site Response for Bedrock Ground Motion to Earthquake in Phuentsholing, Bhutan," Sustainability, MDPI, vol. 12(13), pages 1-22, June.
    15. Nisha Naik & Deepankar Choudhury, 2015. "Deterministic seismic hazard analysis considering different seismicity levels for the state of Goa, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 557-580, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:3:d:10.1007_s11069-023-06094-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.