IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i13d10.1007_s11069-024-06652-8.html
   My bibliography  Save this article

Evaluating landslide susceptibility and landscape changes due to road expansion using optimized machine learning

Author

Listed:
  • Saeed Alqadhi

    (King Khalid University)

  • Hoang Thi Hang

    (Jamia Millia Islamia)

  • Javed Mallick

    (King Khalid University)

  • Abdullah Faiz Saeed Al Asmari

    (King Khalid University)

Abstract

The Garhwal and Kumaun regions of the Himalayas of India have experienced rapid urbanisation due to the expansion of the national highway (NH-58) in Uttarakhand, which has a significant impact on the frequency and intensity of landslides. Therefore, this study assesses the impact of road expansion on landslide susceptibility in the Himalayas by examining landscape changes within 1 km, 2 km, and 3 km buffer zones around a major highway. Land use and land cover (LULC) from the years 2000 and 2023 were classified using Random Forest (RF) modelling to assess landslide susceptibility due to landscape change. Twelve key parameters were selected for susceptibility modeling and colinearity was tested by multicollinearity analysis to ensure robustness. The RF models were optimised using particle swarm optimisation (PSO) to model landslide susceptibility with higher precision, and their effectiveness was confirmed by receiver operating characteristic (ROC) and precision-recall curves. In addition, a polynomial regression analysis was used to investigate the complex relationships between landscape changes and landslide susceptibility. The susceptibility models showed high accuracy with area under the curve (AUC) values of 0.9083 and 0.9068. The results showed significant landscape changes affecting landslide susceptibility: The forest area decreased by 15.74 km² from 2000 to 2023, while the built-up area increased by 15.41 km². In particular, the zone with very low susceptibility to landslides within the 1 km buffer decreased by 5.569 km² and the zone with high susceptibility within the 3 km buffer increased by 4.972 km². The polynomial regression analysis showed that the built-up areas near the motorway decreased the most by 1.260 km², while the forest areas further away from the corridor increased by up to 4.585 km². This analysis illustrates the significant influence of road proximity on landscape dynamics and landslide risk and provides important insights for policy and land use planning in the rapidly developing Himalayan regions.

Suggested Citation

  • Saeed Alqadhi & Hoang Thi Hang & Javed Mallick & Abdullah Faiz Saeed Al Asmari, 2024. "Evaluating landslide susceptibility and landscape changes due to road expansion using optimized machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11713-11741, October.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:13:d:10.1007_s11069-024-06652-8
    DOI: 10.1007/s11069-024-06652-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06652-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06652-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhuo Chen & Fei Ye & Wenxi Fu & Yutian Ke & Haoyuan Hong, 2020. "The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 853-877, April.
    2. S. P. Pradhan & Vikram Vishal & T. N. Singh, 2018. "Finite element modelling of landslide prone slopes around Rudraprayag and Agastyamuni in Uttarakhand Himalayan terrain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 181-200, October.
    3. Bilal Aslam & Adeel Zafar & Umer Khalil, 2023. "Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 673-707, January.
    4. Ujjwal Sur & Prafull Singh & Praveen Kumar Rai & Jay Krishna Thakur, 2021. "Landslide probability mapping by considering fuzzy numerical risk factor (FNRF) and landscape change for road corridor of Uttarakhand, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13526-13554, September.
    5. Akshit Kurani & Pavan Doshi & Aarya Vakharia & Manan Shah, 2023. "A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting," Annals of Data Science, Springer, vol. 10(1), pages 183-208, February.
    6. Zhiheng Wang & Dongchuan Wang & Qiaozhen Guo & Daikun Wang, 2020. "Regional landslide hazard assessment through integrating susceptibility index and rainfall process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2153-2173, December.
    7. Yuxin Cen & Bin Zhang & Jun Luo & Qingchun Deng & Hui Liu & Lei Wang, 2022. "Influence of Topographic Factors on the Characteristics of Gully Systems in Mountainous Areas of Ningnan Dry-Hot Valley, SW China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    8. Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
    9. Ahmed, Marzia & Sulaiman, Mohd Herwan & Mohamad, Ahmad Johari & Rahman, Mostafijur, 2024. "Gooseneck barnacle optimization algorithm: A novel nature inspired optimization theory and application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 248-265.
    10. Aditi Singh & Shilpa Pal & D. P. Kanungo, 2021. "An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5058-5095, April.
    11. Shuai Zhao & Zhou Zhao, 2021. "A Comparative Study of Landslide Susceptibility Mapping Using SVM and PSO-SVM Models Based on Grid and Slope Units," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tariq Siddique & M. E. A. Mondal & S. P. Pradhan & M. Salman & M. Sohel, 2020. "Geotechnical assessment of cut slopes in the landslide-prone Himalayas: rock mass characterization and simulation approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 413-435, October.
    2. Chin Soon Ku & Jiale Xiong & Yen-Lin Chen & Shing Dhee Cheah & Hoong Cheng Soong & Lip Yee Por, 2023. "Improving Stock Market Predictions: An Equity Forecasting Scanner Using Long Short-Term Memory Method with Dynamic Indicators for Malaysia Stock Market," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
    3. Jin, Ting & Liang, Feiyan & Dong, Xiaoqi & Cao, Xiaojuan, 2023. "Research on land resource management integrated with support vector machine —Based on the perspective of green innovation," Resources Policy, Elsevier, vol. 86(PB).
    4. Ge Yan & Guoan Tang & Sijin Li & Dingyang Lu & Liyang Xiong & Shouyun Liang, 2023. "Uncertainty in regional scale assessment of landslide susceptibility using various resolutions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 399-423, May.
    5. Jonmenjoy Barman & Brototi Biswas & K. Srinivasa Rao, 2024. "A hybrid integration of analytical hierarchy process (AHP) and the multiobjective optimization on the basis of ratio analysis (MOORA) for landslide susceptibility zonation of Aizawl, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8571-8596, July.
    6. Thiago Conte & Roberto Oliveira, 2024. "Comparative Analysis between Intelligent Machine Committees and Hybrid Deep Learning with Genetic Algorithms in Energy Sector Forecasting: A Case Study on Electricity Price and Wind Speed in the Brazi," Energies, MDPI, vol. 17(4), pages 1-31, February.
    7. Mokhtar Jlidi & Oscar Barambones & Faiçal Hamidi & Mohamed Aoun, 2024. "ANN for Temperature and Irradiation Prediction and Maximum Power Point Tracking Using MRP-SMC," Energies, MDPI, vol. 17(12), pages 1-21, June.
    8. Mohammad Mehrabi, 2022. "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 901-937, March.
    9. Pulikandala Nithish Kumar & Nneka Umeorah & Alex Alochukwu, 2024. "Dynamic graph neural networks for enhanced volatility prediction in financial markets," Papers 2410.16858, arXiv.org.
    10. Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
    11. Gupta, Priya & Singh, Rhythm, 2023. "Combining a deep learning model with multivariate empirical mode decomposition for hourly global horizontal irradiance forecasting," Renewable Energy, Elsevier, vol. 206(C), pages 908-927.
    12. Amir A. Imam & Abdullah Abusorrah & Mustafa M. A. Seedahmed & Mousa Marzband, 2024. "Accurate Forecasting of Global Horizontal Irradiance in Saudi Arabia: A Comparative Study of Machine Learning Predictive Models and Feature Selection Techniques," Mathematics, MDPI, vol. 12(16), pages 1-25, August.
    13. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    14. Huaqiang Yin & Wei Zhou & Zhangqiang Peng, 2023. "Numerical simulation of rainfall-induced debris flow in the Hongchun gully based on the coupling of the LHT model and the Pudasaini model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2553-2572, July.
    15. Syed Hasan Jafar & Shakeb Akhtar & Hani El-Chaarani & Parvez Alam Khan & Ruaa Binsaddig, 2023. "Forecasting of NIFTY 50 Index Price by Using Backward Elimination with an LSTM Model," JRFM, MDPI, vol. 16(10), pages 1-23, September.
    16. Liang Chen & Yitong Pan & Dongqing Zhang, 2024. "Prediction of Carbon Emissions Level in China’s Logistics Industry Based on the PSO-SVR Model," Mathematics, MDPI, vol. 12(13), pages 1-13, June.
    17. Agnieszka Wawrzyniak & Andrzej Przybylak & Piotr Boniecki & Agnieszka Sujak & Maciej Zaborowicz, 2023. "Neural Modelling in the Study of the Relationship between Herd Structure, Amount of Manure and Slurry Produced, and Location of Herds in Poland," Agriculture, MDPI, vol. 13(7), pages 1-13, July.
    18. Xianyu Yu & Yang Xia & Jianguo Zhou & Weiwei Jiang, 2023. "Landslide Susceptibility Mapping Based on Multitemporal Remote Sensing Image Change Detection and Multiexponential Band Math," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    19. You-Shyang Chen & Jieh-Ren Chang & Ying-Hsun Hung & Jia-Hsien Lai, 2023. "Oversampling Application of Identifying 3D Selective Laser Sintering Yield by Hybrid Mathematical Classification Models," Mathematics, MDPI, vol. 11(14), pages 1-30, July.
    20. S. Rolain & M. Alvioli & Q. D. Nguyen & T. L. Nguyen & L. Jacobs & M. Kervyn, 2023. "Influence of landslide inventory timespan and data selection on slope unit-based susceptibility models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2227-2244, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:13:d:10.1007_s11069-024-06652-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.