IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8854606.html
   My bibliography  Save this article

A Comparative Study of Landslide Susceptibility Mapping Using SVM and PSO-SVM Models Based on Grid and Slope Units

Author

Listed:
  • Shuai Zhao
  • Zhou Zhao

Abstract

The main purpose of this study aims to apply and compare the rationality of landslide susceptibility maps using support vector machine (SVM) and particle swarm optimization coupled with support vector machine (PSO-SVM) models in Lueyang County, China, enhance the connection with the natural terrain, and analyze the application of grid units and slope units. A total of 186 landslide locations were identified by earlier reports and field surveys. The landslide inventory was randomly divided into two parts: 70% for training dataset and 30% for validation dataset. Based on the multisource data and geological environment, 16 landslide conditioning factors were selected, including control factors and triggering factors (i.e., altitude, slope angle, slope aspect, plan curvature, profile curvature, SPI, TPI, TRI, lithology, distance to faults, TWI, distance to rivers, NDVI, distance to roads, land use, and rainfall). The susceptibility between each conditioning factor and landslide was deduced using a certainty factor model. Subsequently, combined with grid units and slope units, the landslide susceptibility models were carried out by using SVM and PSO-SVM methods. The precision capability of the landslide susceptibility mapping produced by different models and units was verified through a receiver operating characteristic (ROC) curve. The results showed that the PSO-SVM model based on slope units had the best performance in landslide susceptibility mapping, and the area under the curve (AUC) values of training and validation datasets are 0.945 and 0.9245, respectively. Hence, the machine learning algorithm coupled with slope units can be considered a reliable and effective technique in landslide susceptibility mapping.

Suggested Citation

  • Shuai Zhao & Zhou Zhao, 2021. "A Comparative Study of Landslide Susceptibility Mapping Using SVM and PSO-SVM Models Based on Grid and Slope Units," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, January.
  • Handle: RePEc:hin:jnlmpe:8854606
    DOI: 10.1155/2021/8854606
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8854606.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8854606.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8854606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianyu Yu & Yang Xia & Jianguo Zhou & Weiwei Jiang, 2023. "Landslide Susceptibility Mapping Based on Multitemporal Remote Sensing Image Change Detection and Multiexponential Band Math," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    2. Liang Chen & Yitong Pan & Dongqing Zhang, 2024. "Prediction of Carbon Emissions Level in China’s Logistics Industry Based on the PSO-SVR Model," Mathematics, MDPI, vol. 12(13), pages 1-13, June.
    3. Saeed Alqadhi & Hoang Thi Hang & Javed Mallick & Abdullah Faiz Saeed Al Asmari, 2024. "Evaluating landslide susceptibility and landscape changes due to road expansion using optimized machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11713-11741, October.
    4. Jonmenjoy Barman & Brototi Biswas & K. Srinivasa Rao, 2024. "A hybrid integration of analytical hierarchy process (AHP) and the multiobjective optimization on the basis of ratio analysis (MOORA) for landslide susceptibility zonation of Aizawl, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8571-8596, July.
    5. S. Rolain & M. Alvioli & Q. D. Nguyen & T. L. Nguyen & L. Jacobs & M. Kervyn, 2023. "Influence of landslide inventory timespan and data selection on slope unit-based susceptibility models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2227-2244, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8854606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.