IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00804-z.html
   My bibliography  Save this article

An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India

Author

Listed:
  • Aditi Singh

    (Sarala Birla University)

  • Shilpa Pal

    (Delhi Technological University)

  • D. P. Kanungo

    (CSIR—Central Building Research Institute (CBRI))

Abstract

Considering the ever-increasing landslide incidences in Indian Himalayas, a methodology has been presented to assess the risk to buildings constructed in the landslide-prone areas. Since landslide is a dynamic phenomenon, an inter-disciplinary approach is required for the assessment of elements at risk (buildings in this case). Therefore, a novel remote sensing and GIS-based semi-quantitative technique has been developed by integrating the concepts of landslide susceptibility zonation (LSZ), physical vulnerability (PV) and the proximity (Prox) of buildings from the influence zone (i.e. LSZ and drainage channels). In order to understand the acceptability of risk, the landslide risk (LR) has been categorized into three risk classes as class I (low risk), class II (moderate risk) and class III (high risk). This study aims to develop a systematic and easy to adopt methodology for hilly terrains of India in a scenario of historical data scarcity and also in line with the codal provisions of the country as well as the geographical conditions. The developed methodology is implemented in a test site of Gopeshwar Township, Chamoli District Headquarter, Uttarakhand State of India, covering an area of 8.39 km2 situated in the upper Alaknanda valley. This study will be useful in increasing the safety aspects of the infrastructures and lives and also for strategic governance of developmental activities in the times ahead, especially in developing countries.

Suggested Citation

  • Aditi Singh & Shilpa Pal & D. P. Kanungo, 2021. "An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5058-5095, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00804-z
    DOI: 10.1007/s10668-020-00804-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00804-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00804-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guru Balamurugan & Veerappan Ramesh & Mangminlen Touthang, 2016. "Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 465-488, October.
    2. Aditi Singh & D. P. Kanungo & Shilpa Pal, 2019. "Physical vulnerability assessment of buildings exposed to landslides in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 753-790, March.
    3. Martin Bednarik & Işık Yilmaz & Marian Marschalko, 2012. "Landslide hazard and risk assessment: a case study from the Hlohovec–Sered’ landslide area in south-west Slovakia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 547-575, October.
    4. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    5. Edison Thennavan & Ganapathy Pattukandan Ganapathy & S. S. Chandra Sekaran & Ajay S. Rajawat, 2016. "Use of GIS in assessing building vulnerability for landslide hazard in The Nilgiris, Western Ghats, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1031-1050, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed Alqadhi & Hoang Thi Hang & Javed Mallick & Abdullah Faiz Saeed Al Asmari, 2024. "Evaluating landslide susceptibility and landscape changes due to road expansion using optimized machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11713-11741, October.
    2. Huaqiang Yin & Wei Zhou & Zhangqiang Peng, 2023. "Numerical simulation of rainfall-induced debris flow in the Hongchun gully based on the coupling of the LHT model and the Pudasaini model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2553-2572, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    2. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    3. D. Costanzo & C. Cappadonia & C. Conoscenti & E. Rotigliano, 2012. "Exporting a Google Earth ™ aided earth-flow susceptibility model: a test in central Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 103-114, March.
    4. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    5. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    6. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    7. Cuiying Zhou & Jinwu Ouyang & Zhen Liu & Lihai Zhang, 2022. "Early Risk Warning of Highway Soft Rock Slope Group Using Fuzzy-Based Machine Learning," Sustainability, MDPI, vol. 14(6), pages 1-28, March.
    8. Zohre Hoseinzade & Asal Zavarei & Kourosh Shirani, 2021. "Application of prediction–area plot in the assessment of MCDM methods through VIKOR, PROMETHEE II, and permutation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2489-2507, December.
    9. Alejandro Gonzalez-Ollauri & Slobodan B. Mickovski, 2021. "A Simple GIS-Based Tool for the Detection of Landslide-Prone Zones on a Coastal Slope in Scotland," Land, MDPI, vol. 10(7), pages 1-15, June.
    10. Massimo Conforti & Pietro Aucelli & Gaetano Robustelli & Fabio Scarciglia, 2011. "Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 881-898, March.
    11. Nikolaos Tavoularis & George Papathanassiou & Athanassios Ganas & Panagiotis Argyrakis, 2021. "Development of the Landslide Susceptibility Map of Attica Region, Greece, Based on the Method of Rock Engineering System," Land, MDPI, vol. 10(2), pages 1-31, February.
    12. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    13. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    14. Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
    15. Jörg Grunert & Sigrid Hess, 2010. "The Upper Middle Rhine Valley as a risk area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(3), pages 577-597, December.
    16. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    17. Mehrnoosh Jadda & Helmi Shafri & Shattri Mansor, 2011. "PFR model and GiT for landslide susceptibility mapping: a case study from Central Alborz, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 395-412, May.
    18. Elena Cantatore & Dario Esposito & Alberico Sonnessa, 2023. "Mapping the Multi-Vulnerabilities of Outdoor Places to Enhance the Resilience of Historic Urban Districts: The Case of the Apulian Region Exposed to Slow and Rapid-Onset Disasters," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    19. I. P. Kovács & T. Bugya & Sz. Czigány & M. Defilippi & D. Lóczy & P. Riccardi & L. Ronczyk & P. Pasquali, 2019. "How to avoid false interpretations of Sentinel-1A TOPSAR interferometric data in landslide mapping? A case study: recent landslides in Transdanubia, Hungary," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 693-712, March.
    20. Prafull Singh & Ankit Sharma & Ujjwal Sur & Praveen Kumar Rai, 2021. "Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5233-5250, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00804-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.