IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.16858.html
   My bibliography  Save this paper

Dynamic graph neural networks for enhanced volatility prediction in financial markets

Author

Listed:
  • Pulikandala Nithish Kumar
  • Nneka Umeorah
  • Alex Alochukwu

Abstract

Volatility forecasting is essential for risk management and decision-making in financial markets. Traditional models like Generalized Autoregressive Conditional Heteroskedasticity (GARCH) effectively capture volatility clustering but often fail to model complex, non-linear interdependencies between multiple indices. This paper proposes a novel approach using Graph Neural Networks (GNNs) to represent global financial markets as dynamic graphs. The Temporal Graph Attention Network (Temporal GAT) combines Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) to capture the temporal and structural dynamics of volatility spillovers. By utilizing correlation-based and volatility spillover indices, the Temporal GAT constructs directed graphs that enhance the accuracy of volatility predictions. Empirical results from a 15-year study of eight major global indices show that the Temporal GAT outperforms traditional GARCH models and other machine learning methods, particularly in short- to mid-term forecasts. The sensitivity and scenario-based analysis over a range of parameters and hyperparameters further demonstrate the significance of the proposed technique. Hence, this work highlights the potential of GNNs in modeling complex market behaviors, providing valuable insights for financial analysts and investors.

Suggested Citation

  • Pulikandala Nithish Kumar & Nneka Umeorah & Alex Alochukwu, 2024. "Dynamic graph neural networks for enhanced volatility prediction in financial markets," Papers 2410.16858, arXiv.org.
  • Handle: RePEc:arx:papers:2410.16858
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.16858
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    2. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    3. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    4. Akshit Kurani & Pavan Doshi & Aarya Vakharia & Manan Shah, 2023. "A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting," Annals of Data Science, Springer, vol. 10(1), pages 183-208, February.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    2. Dang, Tam Hoang Nhat & Balli, Faruk & Balli, Hatice Ozer & Gabauer, David & Nguyen, Thi Thu Ha, 2024. "Sectoral uncertainty spillovers in emerging markets: A quantile time–frequency connectedness approach," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 121-139.
    3. Chiranjivi, GVS & Sensarma, Rudra, 2023. "The effects of economic and financial shocks on private investment: A wavelet study of return and volatility spillovers," International Review of Financial Analysis, Elsevier, vol. 90(C).
    4. Viorica CHIRILA & Ciprian CHIRILA, 2018. "Effects of US Monetary Policy on Eastern European Financial Markets," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 10(2), pages 149-166, August.
    5. Ferhat Camlica & Didem Gunes & Etkin Ozen, 2017. "A Financial Connectedness Analysis for Turkey," Working Papers 1719, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    6. Zhang, Wenting & He, Xie & Hamori, Shigeyuki, 2022. "Volatility spillover and investment strategies among sustainability-related financial indexes: Evidence from the DCC-GARCH-based dynamic connectedness and DCC-GARCH t-copula approach," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    8. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Al-Yahyaee, Khamis Hamed & Shahbaz, Muhammad, 2017. "Oil and foreign exchange market tail dependence and risk spillovers for MENA, emerging and developed countries: VMD decomposition based copulas," Energy Economics, Elsevier, vol. 67(C), pages 476-495.
    9. Jing Hao & Feng He & Feng Ma & Tong Fu, 2023. "Trading around the clock: Revisit volatility spillover between crude oil and equity markets in different trading sessions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 771-791, June.
    10. Tingting Cao & Weiqing Sun & Cuiping Sun & Lin Hao, 2022. "Unique futures in China: studys on volatility spillover effects of ferrous metal futures," Papers 2206.15039, arXiv.org.
    11. Walid Abass Mohammed, 2021. "Volatility Spillovers among Developed and Developing Countries: The Global Foreign Exchange Markets," JRFM, MDPI, vol. 14(6), pages 1-30, June.
    12. Aliyu, Shehu Usman Rano, 2020. "What have we learnt from modelling stock returns in Nigeria: Higgledy-piggledy?," MPRA Paper 110382, University Library of Munich, Germany, revised 06 Jun 2021.
    13. Allen, David E. & McAleer, Michael & Powell, Robert J. & Singh, Abhay K., 2017. "Volatility Spillovers from Australia's major trading partners across the GFC," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 159-175.
    14. Afees A. Salisu & Kazeem Isah, 2017. "Modeling the spillovers between stock market and money market in Nigeria," Working Papers 023, Centre for Econometric and Allied Research, University of Ibadan.
    15. He, Xie & Hamori, Shigeyuki, 2021. "Is volatility spillover enough for investor decisions? A new viewpoint from higher moments," Journal of International Money and Finance, Elsevier, vol. 116(C).
    16. Frankovic, Jozo & Liu, Bin & Suardi, Sandy, 2022. "On spillover effects between cryptocurrency-linked stocks and the cryptocurrency market: Evidence from Australia," Global Finance Journal, Elsevier, vol. 54(C).
    17. Das, Suman & Roy, Saikat Sinha, 2023. "Following the leaders? A study of co-movement and volatility spillover in BRICS currencies," Economic Systems, Elsevier, vol. 47(2).
    18. Roy, Rudra Prosad & Sinha Roy, Saikat, 2017. "Financial contagion and volatility spillover: An exploration into Indian commodity derivative market," Economic Modelling, Elsevier, vol. 67(C), pages 368-380.
    19. Ziadat, Salem Adel & Herbst, Patrick & McMillan, David G., 2020. "Inter- and intra-regional stock market relations for the GCC bloc," Research in International Business and Finance, Elsevier, vol. 54(C).
    20. Nishimura, Yusaku & Tsutsui, Yoshiro & Hirayama, Kenjiro, 2018. "Do international investors cause stock market spillovers? Comparing responses of cross-listed stocks between accessible and inaccessible markets," Economic Modelling, Elsevier, vol. 69(C), pages 237-248.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.16858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.