Prediction of Carbon Emissions Level in China’s Logistics Industry Based on the PSO-SVR Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shuai Zhao & Zhou Zhao, 2021. "A Comparative Study of Landslide Susceptibility Mapping Using SVM and PSO-SVM Models Based on Grid and Slope Units," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jonmenjoy Barman & Brototi Biswas & K. Srinivasa Rao, 2024. "A hybrid integration of analytical hierarchy process (AHP) and the multiobjective optimization on the basis of ratio analysis (MOORA) for landslide susceptibility zonation of Aizawl, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8571-8596, July.
- Xianyu Yu & Yang Xia & Jianguo Zhou & Weiwei Jiang, 2023. "Landslide Susceptibility Mapping Based on Multitemporal Remote Sensing Image Change Detection and Multiexponential Band Math," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
- Saeed Alqadhi & Hoang Thi Hang & Javed Mallick & Abdullah Faiz Saeed Al Asmari, 2024. "Evaluating landslide susceptibility and landscape changes due to road expansion using optimized machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11713-11741, October.
- S. Rolain & M. Alvioli & Q. D. Nguyen & T. L. Nguyen & L. Jacobs & M. Kervyn, 2023. "Influence of landslide inventory timespan and data selection on slope unit-based susceptibility models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2227-2244, September.
More about this item
Keywords
carbon emissions prediction; gray relational analysis; logistics industry; PSO algorithm; support vector regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1980-:d:1422964. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.