IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3508-d1216928.html
   My bibliography  Save this article

Prediction of Rockburst Propensity Based on Intuitionistic Fuzzy Set—Multisource Combined Weights—Improved Attribute Measurement Model

Author

Listed:
  • Jianhong Chen

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Yakun Zhao

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Zhe Liu

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Shan Yang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Zhiyong Zhou

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract

A rockburst is a geological disaster that occurs in resource development or engineering construction. In order to reduce the harm caused by rockburst, this paper proposes a prediction study of rockburst propensity based on the intuitionistic fuzzy set-multisource combined weights-improved attribute measurement model. From the perspective of rock mechanics, the uniaxial compressive strength σ c , tensile stress σ t , shear stress σ θ , compression/tension ratio σ c / σ t , shear/compression ratio σ θ / σ c , and elastic deformation coefficient W e t were selected as the indicators for predicting the propensity of rockburst, and the corresponding attribute classification set was established. Constructing a model framework based on an intuitionistic fuzzy set–improved attribute measurement includes transforming the vagueness of rockburst indicators with an intuitionistic fuzzy set and controlling the uncertainty in the results of the attribute measurements, as well as improving the accuracy of the model using the Euclidean distance method to improve the attribute identification method. To further transform the vagueness of rockburst indicators, the multisource system for combined weights of rockburst propensity indicators was constructed using the minimum entropy combined weighting method, the game theory combined weighting method, and the multiplicative synthetic normalization combined weighting method integrated with intuitionistic fuzzy sets, and the single-valued data of the indicators were changed into intervalized data on the basis of subjective weights based on the analytic hierarchy process and objective weights, further based on the coefficient of variation method. Choosing 30 groups of typical rockburst cases, the indicator weights and propensity prediction results were calculated and analyzed through this paper’s model. Firstly, comparing the prediction results of this paper’s model with the results of the other three single-combination weighting models for attribute measurement, the accuracy of the prediction results of this paper’s model is 86.7%, which is higher than that of the other model results that were the least in addition to the number of uncertain cases, indicating that the uncertainty of attribute measurement has been effectively dealt with; secondly, the rationality of the multiple sources system for combined weights is verified, and the vagueness of the indicators is controlled.

Suggested Citation

  • Jianhong Chen & Yakun Zhao & Zhe Liu & Shan Yang & Zhiyong Zhou, 2023. "Prediction of Rockburst Propensity Based on Intuitionistic Fuzzy Set—Multisource Combined Weights—Improved Attribute Measurement Model," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3508-:d:1216928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaobao Liu & Jianfu Shao & Weiya Xu & Yongdong Meng, 2013. "Prediction of rock burst classification using the technique of cloud models with attribution weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 549-568, September.
    2. Yakun Zhao & Jianhong Chen & Shan Yang & Zhe Liu, 2022. "Game Theory and an Improved Maximum Entropy-Attribute Measure Interval Model for Predicting Rockburst Intensity," Mathematics, MDPI, vol. 10(15), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yumin Wang & Xian’e Zhang & Yifeng Wu, 2020. "Eutrophication Assessment Based on the Cloud Matter Element Model," IJERPH, MDPI, vol. 17(1), pages 1-19, January.
    2. Yuantian Sun & Guichen Li & Sen Yang, 2021. "Rockburst Interpretation by a Data-Driven Approach: A Comparative Study," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    3. K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
    4. Zhe Liu & Jianhong Chen & Yakun Zhao & Shan Yang, 2023. "A Novel Method for Predicting Rockburst Intensity Based on an Improved Unascertained Measurement and an Improved Game Theory," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    5. Ning Li & R. Jimenez, 2018. "A logistic regression classifier for long-term probabilistic prediction of rock burst hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 197-215, January.
    6. Jian Zhou & Xibing Li & Hani Mitri, 2015. "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-316, October.
    7. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    8. Yakun Zhao & Jianhong Chen & Shan Yang & Zhe Liu, 2022. "Game Theory and an Improved Maximum Entropy-Attribute Measure Interval Model for Predicting Rockburst Intensity," Mathematics, MDPI, vol. 10(15), pages 1-22, July.
    9. Kun Cheng & Qiang Fu & Song Cui & Tian-xiao Li & Wei Pei & Dong Liu & Jun Meng, 2017. "Evaluation of the land carrying capacity of major grain-producing areas and the identification of risk factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 263-280, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3508-:d:1216928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.