IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i1d10.1007_s11069-023-05855-9.html
   My bibliography  Save this article

The prediction of disaster risk paths based on IECNN model

Author

Listed:
  • Yanyan Liu

    (Beijing Jiaotong University)

  • Keping Li

    (Beijing Jiaotong University)

  • Dongyang Yan

    (Beijing Jiaotong University)

  • Shuang Gu

    (Beijing Jiaotong University)

Abstract

The prediction of disaster risk paths can foresee the spread of disaster risk and lay a foundation for reducing or avoiding the harm of disaster risk. In this paper, we have improved the embedding layer of convolution neural network (CNN), and we literally refer to the specific CNN framework as IECNN. The IECNN model is proposed to predict the disaster risk path. Here, we first establish a disaster risk network in which each node represents two attributes: place and disaster type. The random walk paths are generated from the disaster risk network, and the structural characteristics of nodes in the disaster risk paths are considered in the improved embedding layer of IECNN. This study also applies Markov chain algorithm to calculate the probability of each disaster risk path and trains the IECNN model with the determined disaster risk paths. ROC curve, AUC, Accuracy, F1-measure, Precision, and Recall are used to evaluate the prediction model. In order to verify the feasibility and advantage of the proposed model, we use a dataset consisting of natural disasters in southwest China in the experimental section. Results of the comparative analysis display that the proposed model cannot only effectively predict the disaster risk path, but also provide the high performance in terms of every evaluation index. Moreover, some characters of disaster risk path are found and discussed. Resultantly, our results can provide an efficient way to prevent and control risk spread in disaster events.

Suggested Citation

  • Yanyan Liu & Keping Li & Dongyang Yan & Shuang Gu, 2023. "The prediction of disaster risk paths based on IECNN model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 163-188, May.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05855-9
    DOI: 10.1007/s11069-023-05855-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05855-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05855-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kınay, Ömer Burak & Saldanha-da-Gama, Francisco & Kara, Bahar Y., 2019. "On multi-criteria chance-constrained capacitated single-source discrete facility location problems," Omega, Elsevier, vol. 83(C), pages 107-122.
    2. Nima Khakzad & Sina Khakzad & Faisal Khan, 2014. "Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1759-1771, December.
    3. Yuejuan Chen & Jin Zhang & Anchao Zhou & Bo Yin, 2018. "Modeling and analysis of mining subsidence disaster chains based on stochastic Petri nets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 19-41, May.
    4. Yazdi, Mohammad & Khan, Faisal & Abbassi, Rouzbeh & Quddus, Noor & Castaneda-Lopez, Homero, 2022. "A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Akgün, İbrahim & Gümüşbuğa, Ferhat & Tansel, Barbaros, 2015. "Risk based facility location by using fault tree analysis in disaster management," Omega, Elsevier, vol. 52(C), pages 168-179.
    6. Liu, Yanyan & Li, Keping & Yan, Dongyang & Gu, Shuang, 2022. "A network-based CNN model to identify the hidden information in text data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    7. Ji-Myong Kim & Kiyoung Son & Young-Jae Kim, 2019. "Assessing regional typhoon risk of disaster management by clustering typhoon paths," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2083-2096, October.
    8. Ding, Long & Khan, Faisal & Abbassi, Rouzbeh & Ji, Jie, 2019. "FSEM: An approach to model contribution of synergistic effect of fires for domino effects," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 271-278.
    9. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    10. Zhou, Wen & Jia, Yifan, 2017. "Predicting links based on knowledge dissemination in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 561-568.
    11. Haifeng Bian & Jun Zhang & Ruixue Li & Huanhuan Zhao & Xuexue Wang & Yiping Bai, 2021. "Risk analysis of tripping accidents of power grid caused by typical natural hazards based on FTA-BN model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1771-1795, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Gang & Liu, Shifeng & Ren, Long & Gong, Daqing, 2023. "A data aggregation-based spatiotemporal model for rail transit risk path forecasting," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Jakub Waikat & Amel Jelidi & Sandro Lic & Georgios Sopidis & Olaf Kähler & Anna Maly & Jesús Pestana & Ferdinand Fuhrmann & Fredi Belavić, 2024. "First Measurement Campaign by a Multi-Sensor Robot for the Lifecycle Monitoring of Transformers," Energies, MDPI, vol. 17(5), pages 1-26, February.
    3. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    2. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    3. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    4. Jones, Dylan & Firouzy, Sina & Labib, Ashraf & Argyriou, Athanasios V., 2022. "Multiple criteria model for allocating new medical robotic devices to treatment centres," European Journal of Operational Research, Elsevier, vol. 297(2), pages 652-664.
    5. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    6. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    7. Jafarzadeh-Ghoushchi, Saeid & Asghari, Mohammad & Mardani, Abbas & Simic, Vladimir & Tirkolaee, Erfan Babaee, 2023. "Designing an efficient humanitarian supply chain network during an emergency: A scenario-based multi-objective model," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    8. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    9. Mozhu Wang & Jianming Yao, 2023. "A reliable location design of unmanned vending machines based on customer satisfaction," Electronic Commerce Research, Springer, vol. 23(1), pages 541-575, March.
    10. Tugnoli, Alessandro & Scarponi, Giordano Emrys & Antonioni, Giacomo & Cozzani, Valerio, 2022. "Quantitative assessment of domino effect and escalation scenarios caused by fragment projection," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2021. "Solutions for districting problems with chance-constrained balancing requirements," Omega, Elsevier, vol. 103(C).
    12. Maass, Kayse Lee & Trapp, Andrew C. & Konrad, Renata, 2020. "Optimizing placement of residential shelters for human trafficking survivors," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    13. Liu, Aijun & Zhao, Yingxue & Meng, Xiaoge & Zhang, Yan, 2020. "A three-phase fuzzy multi-criteria decision model for charging station location of the sharing electric vehicle," International Journal of Production Economics, Elsevier, vol. 225(C).
    14. Ji, Ziguang & Chen, Yi & Ma, Xiaobing & Cai, Yikun & Yang, Li, 2024. "Hierarchical condition-based maintenance planning for corrosion process considering natural environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Ding, Long & Khan, Faisal & Ji, Jie, 2022. "A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Wei Chen & Hui Qu & Kuo Chi, 2021. "Partner Selection in China Interorganizational Patent Cooperation Network Based on Link Prediction Approaches," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    17. Adriana Galderisi & Giada Limongi, 2021. "A Comprehensive Assessment of Exposure and Vulnerabilities in Multi-Hazard Urban Environments: A Key Tool for Risk-Informed Planning Strategies," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    18. Zhicheng Gao & Rongjin Wan & Qian Ye & Weiguo Fan & Shihui Guo & Sergio Ulgiati & Xiaobin Dong, 2020. "Typhoon Disaster Risk Assessment Based on Emergy Theory: A Case Study of Zhuhai City, Guangdong Province, China," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    19. Amin, Md. Tanjin & Scarponi, Giordano Emrys & Cozzani, Valerio & Khan, Faisal, 2024. "Improved pool fire-initiated domino effect assessment in atmospheric tank farms using structural response," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Wang, Mengmeng & Incecik, Atilla & Feng, Shizhe & Gupta, M.K. & Królczyk, Grzegorz & Li, Z, 2023. "Damage identification of offshore jacket platforms in a digital twin framework considering optimal sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05855-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.