IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i3p1759-1771.html
   My bibliography  Save this article

Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico

Author

Listed:
  • Nima Khakzad
  • Sina Khakzad
  • Faisal Khan

Abstract

Major accidents are low-frequency, high-consequence accidents which are not well supported by conventional statistical methods due to the scarcity of directly relevant data. Modeling and decomposition techniques such as event tree have been proved as robust alternatives as they facilitate incorporation of partially relevant near accident data–accident precursor data—in probability estimation and risk analysis of major accidents. In this study, we developed a methodology based on event tree and hierarchical Bayesian analysis to establish informative distributions for offshore blowouts using data of near accidents, such as kicks, leaks, and failure of blowout preventers collected from a variety of offshore drilling rigs. These informative distributions can be used as predictive tools to estimate relevant failure probabilities in the future. Further, having a set of near accident data of a drilling rig of interest, the informative distributions can be updated to render case-specific posterior distributions which are of great importance in quantitative risk analysis. To cope with uncertainties, we implemented the methodology in a Markov Chain Monte Carlo framework and applied it to risk assessment of offshore blowouts in the Gulf of Mexico. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Nima Khakzad & Sina Khakzad & Faisal Khan, 2014. "Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1759-1771, December.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:3:p:1759-1771
    DOI: 10.1007/s11069-014-1271-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1271-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1271-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2012. "Dynamic risk analysis using bow-tie approach," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 36-44.
    3. Woojune Yi & Vicki M. Bier, 1998. "An Application of Copulas to Accident Precursor Analysis," Management Science, INFORMS, vol. 44(12-Part-2), pages 257-270, December.
    4. Robin L. Dillon & Catherine H. Tinsley, 2008. "How Near-Misses Influence Decision Making Under Risk: A Missed Opportunity for Learning," Management Science, INFORMS, vol. 54(8), pages 1425-1440, August.
    5. Khakzad, Nima & Khan, Faisal & Paltrinieri, Nicola, 2014. "On the application of near accident data to risk analysis of major accidents," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 116-125.
    6. Yan, Zhenyu & Haimes, Yacov Y., 2010. "Cross-classified hierarchical Bayesian models for risk-based analysis of complex systems under sparse data," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 764-776.
    7. Quigley, John & Bedford, Tim & Walls, Lesley, 2007. "Estimating rate of occurrence of rare events with empirical bayes: A railway application," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 619-627.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khakzad, Nima & Van Gelder, Pieter, 2018. "Vulnerability of industrial plants to flood-induced natechs: A Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 403-411.
    2. Yanyan Liu & Keping Li & Dongyang Yan & Shuang Gu, 2023. "The prediction of disaster risk paths based on IECNN model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 163-188, May.
    3. Nima Khakzad & Faisal Khan & Paul Amyotte, 2015. "Major Accidents (Gray Swans) Likelihood Modeling Using Accident Precursors and Approximate Reasoning," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1336-1347, July.
    4. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    5. Michael Felix Pacevicius & Marilia Ramos & Davide Roverso & Christian Thun Eriksen & Nicola Paltrinieri, 2022. "Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures," Energies, MDPI, vol. 15(9), pages 1-40, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khakzad, Nima & Khan, Faisal & Paltrinieri, Nicola, 2014. "On the application of near accident data to risk analysis of major accidents," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 116-125.
    2. Hongyang Yu & Faisal Khan & Brian Veitch, 2017. "A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1668-1682, September.
    3. Jinshu Cui & Heather Rosoff & Richard S. John, 2017. "A Polytomous Item Response Theory Model for Measuring Near-Miss Appraisal as a Psychological Trait," Decision Analysis, INFORMS, vol. 14(2), pages 75-86, June.
    4. Keisuke Himoto, 2020. "Hierarchical Bayesian Modeling of Post‐Earthquake Ignition Probabilities Considering Inter‐Earthquake Heterogeneity," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1124-1138, June.
    5. Nima Khakzad & Faisal Khan & Paul Amyotte, 2015. "Major Accidents (Gray Swans) Likelihood Modeling Using Accident Precursors and Approximate Reasoning," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1336-1347, July.
    6. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    7. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    8. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    9. Xie, Shuyi & Huang, Zimeng & Wu, Gang & Luo, Jinheng & Li, Lifeng & Ma, Weifeng & Wang, Bohong, 2024. "Combining precursor and Cloud Leaky noisy-OR logic gate Bayesian network for dynamic probability analysis of major accidents in the oil depots," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    11. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2019. "An integrated approach for real-time hazard mitigation in complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 297-309.
    12. Yang, Yongsheng & Khan, Faisal & Thodi, Premkumar & Abbassi, Rouzbeh, 2017. "Corrosion induced failure analysis of subsea pipelines," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 214-222.
    13. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    14. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    15. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    16. Jie Xue & Genserik Reniers & Jie Li & Ming Yang & Chaozhong Wu & P.H.A.J.M. van Gelder, 2021. "A Bibliometric and Visualized Overview for the Evolution of Process Safety and Environmental Protection," IJERPH, MDPI, vol. 18(11), pages 1-29, June.
    17. Liu, Shengli & Liang, Yongtu, 2021. "Statistics of catastrophic hazardous liquid pipeline accidents," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    18. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C. & Ariffin, A.K. & Singh, S.S., 2021. "Evidence based risk analysis of fire and explosion accident scenarios in FPSOs," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Zhou, Ying & Li, Chenshuang & Ding, Lieyun & Sekula, Przemyslaw & Love, Peter E.D. & Zhou, Cheng, 2019. "Combining association rules mining with complex networks to monitor coupled risks," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 194-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:3:p:1759-1771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.