IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i2p652-664.html
   My bibliography  Save this article

Multiple criteria model for allocating new medical robotic devices to treatment centres

Author

Listed:
  • Jones, Dylan
  • Firouzy, Sina
  • Labib, Ashraf
  • Argyriou, Athanasios V.

Abstract

This paper presents a multi-criteria methodology for allocating a small number of novel robotic devices to a set of potential treatment centres in the South of the UK. The robotic devices provide a novel means of diagnosis and treatment of prostate cancer and are currently in the design phase of an EU-sponsored research project. The aim of the project is to provide enhanced access to the new prostate cancer diagnosis and treatment technology. Hence, location and allocation decisions need to be optimised to facilitate this goal. A fuzzy logic based methodology based on measures of prevalence and current access to treatment centres is developed in order to identify a set of priority locales (postcode districts) for improved access. An extended goal programming facility location model is then formulated which incorporates both priority and general postcode access measures. The p-median, p-centre and coverage variants of facility location are modelled via a set of six goals. A comprehensive weight sensitivity analysis is used to generate 25 distinct solutions across the six-dimensional objective space. Analysis of the results with respect to methodology, location and allocation decisions, number of robotic devices and trade-offs between goals is undertaken and conclusions are drawn.

Suggested Citation

  • Jones, Dylan & Firouzy, Sina & Labib, Ashraf & Argyriou, Athanasios V., 2022. "Multiple criteria model for allocating new medical robotic devices to treatment centres," European Journal of Operational Research, Elsevier, vol. 297(2), pages 652-664.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:2:p:652-664
    DOI: 10.1016/j.ejor.2021.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721005099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, Dylan, 2011. "A practical weight sensitivity algorithm for goal and multiple objective programming," European Journal of Operational Research, Elsevier, vol. 213(1), pages 238-245, August.
    2. Adrian Ramirez-Nafarrate & Joshua D. Lyon & John W. Fowler & Ozgur M. Araz, 2015. "Point-of-Dispensing Location and Capacity Optimization via a Decision Support System," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1311-1328, August.
    3. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    4. Kınay, Ömer Burak & Saldanha-da-Gama, Francisco & Kara, Bahar Y., 2019. "On multi-criteria chance-constrained capacitated single-source discrete facility location problems," Omega, Elsevier, vol. 83(C), pages 107-122.
    5. Harwin de Vries & Joris van de Klundert & Albert P.M. Wagelmans, 2020. "The Roadside Healthcare Facility Location Problem A Managerial Network Design Challenge," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1165-1187, May.
    6. Karatas, Mumtaz & Yakıcı, Ertan, 2019. "An analysis of p-median location problem: Effects of backup service level and demand assignment policy," European Journal of Operational Research, Elsevier, vol. 272(1), pages 207-218.
    7. Amelia Bilbao-Terol & Mar Arenas-Parra & Verónica Cañal-Fernández & Celia Bilbao-Terol, 2016. "Multi-criteria decision making for choosing socially responsible investment within a behavioral portfolio theory framework: a new way of investing into a crisis environment," Annals of Operations Research, Springer, vol. 247(2), pages 549-580, December.
    8. Wu, Shengna & Yang, Jun & Peng, Rui & Zhai, Qingqing, 2021. "Optimal design of facility allocation and maintenance strategy for a cellular network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Chang, Ching-Ter, 2015. "Multi-choice goal programming model for the optimal location of renewable energy facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 379-389.
    10. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    11. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    12. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, April.
    13. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    14. Kucukyazici, Beste & Zhang, Yue & Ardestani-Jaafari, Amir & Song, Lijie, 2020. "Incorporating patient preferences in the design and operation of cancer screening facility networks," European Journal of Operational Research, Elsevier, vol. 287(2), pages 616-632.
    15. Romero, Carlos, 2001. "Extended lexicographic goal programming: a unifying approach," Omega, Elsevier, vol. 29(1), pages 63-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
    2. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    3. Hocine, Amin & Kouaissah, Noureddine & Lozza, Sergio Ortobelli & Aouam, Tarik, 2024. "Modelling De novo programming within Simon’s satisficing theory: Methods and application in designing an optimal offshore wind farm location system," European Journal of Operational Research, Elsevier, vol. 315(1), pages 289-306.
    4. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    5. David Kik & Matthias Gerhard Wichmann & Thomas Stefan Spengler, 2022. "Decision support framework for the regional facility location and development planning problem," Journal of Business Economics, Springer, vol. 92(1), pages 115-157, January.
    6. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.
    7. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    8. Amelia Bilbao-Terol & Mariano Jiménez & Mar Arenas-Parra, 2016. "A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning," Annals of Operations Research, Springer, vol. 245(1), pages 137-162, October.
    9. Jones, Dylan & Florentino, Helenice & Cantane, Daniela & Oliveira, Rogerio, 2016. "An extended goal programming methodology for analysis of a network encompassing multiple objectives and stakeholders," European Journal of Operational Research, Elsevier, vol. 255(3), pages 845-855.
    10. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    11. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    12. Mila Bravo & Dylan Jones & David Pla-Santamaria & Francisco Salas-Molina, 2022. "Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection," Operational Research, Springer, vol. 22(5), pages 5685-5706, November.
    13. Mila Bravo & Dylan Jones & David Pla-Santamaria & Graham Wall, 2018. "Robustness of weighted goal programming models: an analytical measure and its application to offshore wind-farm site selection in United Kingdom," Annals of Operations Research, Springer, vol. 267(1), pages 65-79, August.
    14. Knight, V.A. & Harper, P.R. & Smith, L., 2012. "Ambulance allocation for maximal survival with heterogeneous outcome measures," Omega, Elsevier, vol. 40(6), pages 918-926.
    15. Mulder, H.M. & Pelsmajer, M.J. & Reid, K.B., 2006. "Generalized centrality in trees," Econometric Institute Research Papers EI 2006-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Rolland, Erik & Schilling, David A. & Current, John R., 1997. "An efficient tabu search procedure for the p-Median Problem," European Journal of Operational Research, Elsevier, vol. 96(2), pages 329-342, January.
    17. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    18. Faustino, Fausta J. & Lopes, José Calixto & Melo, Joel D. & Sousa, Thales & Padilha-Feltrin, Antonio & Brito, José A.S. & Garcia, Claudio O., 2023. "Identifying charging zones to allocate public charging stations for electric vehicles," Energy, Elsevier, vol. 283(C).
    19. Canos, M. J. & Ivorra, C. & Liern, V., 1999. "An exact algorithm for the fuzzy p-median problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 80-86, July.
    20. Hakimi, S.Louis, 1983. "Network location theory and contingency planning," Energy, Elsevier, vol. 8(8), pages 697-702.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:2:p:652-664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.