IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i3d10.1007_s11069-023-05812-6.html
   My bibliography  Save this article

Earthquake fatality prediction based on hybrid feature importance assessment: a case study in Yunnan Province, China

Author

Listed:
  • Manhao Luo

    (Yunnan Normal University
    Center for Geospatial Information Engineering and Technology of Yunnan Province)

  • Shuangyun Peng

    (Yunnan Normal University
    Center for Geospatial Information Engineering and Technology of Yunnan Province)

  • Yanbo Cao

    (Earthquake Administration of Yunnan Province)

  • Jing Liu

    (Yunnan Normal University
    Center for Geospatial Information Engineering and Technology of Yunnan Province)

  • Bangmei Huang

    (Kunming No. 10 Middle School)

Abstract

Reliable earthquake fatality prediction is an important reference for post-earthquake emergency response efforts. Seismic data are the basis for constructing earthquake casualty prediction models, but the selection and evaluation of earthquake features are more critical due to the scarcity of destructive earthquake samples. In order to make full use of the high-dimensional survey data of destructive earthquake disasters in the Earthquake Reports in Yunnan Province since 1992, and effectively use it to improve the ability to predict the number of earthquake casualties, this paper proposes a hybrid feature importance evaluation method based on four conventional feature contribution methods (IG, PPMCC, SRCC and MDI), ranking the importance of 63 features that affect the number of earthquake casualties in Yunnan Province, and reducing the feature dimension accordingly. Then, cross-validation is used to compare the accuracy of the four machine models before and after dimensionality reduction. We found that (1) among the 10 features with the highest hybrid importance, there were 8 population distribution features, 1 geological hazard feature (number of landslides) and 1 damage degree feature (highest intensity of earthquakes); (2) the feature dimensionality reduction based on the importance of hybrid features can effectively improve the prediction accuracy of machine learning models; and (3) in the comparison of several methods, the Particle Swarm Optimized Support Vector Machine model had the highest prediction accuracy, with an R2 over 0.934. The research results showed that this method can significantly improve the prediction accuracy of the machine learning model and has some reference value for earthquake emergency rescue and post-disaster reconstruction work.

Suggested Citation

  • Manhao Luo & Shuangyun Peng & Yanbo Cao & Jing Liu & Bangmei Huang, 2023. "Earthquake fatality prediction based on hybrid feature importance assessment: a case study in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3353-3376, April.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-023-05812-6
    DOI: 10.1007/s11069-023-05812-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05812-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05812-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyu Ni & Fang Fang, 2016. "Entropy-based model-free feature screening for ultrahigh-dimensional multiclass classification," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 515-530, September.
    2. Ismaël Riedel & Philippe Guéguen & Mauro Dalla Mura & Erwan Pathier & Thomas Leduc & Jocelyn Chanussot, 2015. "Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1111-1141, March.
    3. Hanxi Jia & Junqi Lin & Jinlong Liu, 2019. "An Earthquake Fatalities Assessment Method Based on Feature Importance with Deep Learning and Random Forest Models," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    4. Huang Xing & Zhou Zhonglin & Wang Shaoyu, 2015. "The prediction model of earthquake casuailty based on robust wavelet v-SVM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 717-732, June.
    5. Xing Huang & Mengjie Luo & Huidong Jin, 2020. "Application of improved ELM algorithm in the prediction of earthquake casualties," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    6. S. Turkan & G. Özel, 2014. "Modeling destructive earthquake casualties based on a comparative study for Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1093-1110, June.
    7. Xing Huang & Huidong Jin, 2018. "An earthquake casualty prediction model based on modified partial Gaussian curve," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 999-1021, December.
    8. Muhammet Gul & Ali Fuat Guneri, 2016. "An artificial neural network-based earthquake casualty estimation model for Istanbul city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2163-2178, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia Chaoxu & Nie Gaozhong & Fan Xiwei & Li Huayue & Zhou Junxue & Zeng Xun, 2022. "A new model for the quantitative assessment of earthquake casualties based on the correction of anti-lethal level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1199-1226, January.
    2. Muhammet Gul & Ali Fuat Guneri, 2016. "An artificial neural network-based earthquake casualty estimation model for Istanbul city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2163-2178, December.
    3. Chaoxu Xia & Gaozhong Nie & Huayue Li & Xiwei Fan & Wenhua Qi, 2023. "A composite database of casualty-inducing earthquakes in mainland China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3321-3351, April.
    4. Tongyan Zheng & Lei Li & Chong Xu & Yuandong Huang, 2023. "Spatiotemporal Analysis of Earthquake Distribution and Associated Losses in Chinese Mainland from 1949 to 2021," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    5. Chen, Weiyi & Zhang, Limao, 2022. "An automated machine learning approach for earthquake casualty rate and economic loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Huang Xing & Song Junyi & Huidong Jin, 2020. "The casualty prediction of earthquake disaster based on Extreme Learning Machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 873-886, July.
    7. Fei, Liguo & Wang, Yanqing, 2022. "Demand prediction of emergency materials using case-based reasoning extended by the Dempster-Shafer theory," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    8. Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    9. Hariklia D. Skilodimou & George D. Bathrellos, 2021. "Natural and Technological Hazards in Urban Areas: Assessment, Planning and Solutions," Sustainability, MDPI, vol. 13(15), pages 1-5, July.
    10. Abdelheq Guettiche & Philippe Guéguen & Mostefa Mimoune, 2017. "Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1223-1245, April.
    11. Camila Pareja Yale & Hugo Tsugunobu Yoshida Yoshizaki & Luiz Paulo Fávero, 2022. "A New Zero-Inflated Negative Binomial Multilevel Model for Forecasting the Demand of Disaster Relief Supplies in the State of Sao Paulo, Brazil," Mathematics, MDPI, vol. 10(22), pages 1-11, November.
    12. Tao Huang & Jialiang Li, 2018. "Semiparametric model average prediction in panel data analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 125-144, January.
    13. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    14. Wanpeng Ding & Zhijian Wu & Beilei Zhan & Jian Liu & Jun Bi, 2023. "Analysis of seismic damage of a highway bridge during the 2021 Ms 7.4 earthquake in Maduo County, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2419-2434, July.
    15. Xuejun Jiang & Yunxian Li & Aijun Yang & Ruowei Zhou, 2020. "Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk," Empirical Economics, Springer, vol. 58(5), pages 2085-2103, May.
    16. Lyu Ni & Fang Fang & Fangjiao Wan, 2017. "Adjusted Pearson Chi-Square feature screening for multi-classification with ultrahigh dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 805-828, November.
    17. Jihye Han & Jinsoo Kim & Soyoung Park & Sanghun Son & Minji Ryu, 2020. "Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    18. Ismaël Riedel & Philippe Guéguen, 2018. "Modeling of damage-related earthquake losses in a moderate seismic-prone country and cost–benefit evaluation of retrofit investments: application to France," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 639-662, January.
    19. Randall Reese & Guifang Fu & Geran Zhao & Xiaotian Dai & Xiaotian Li & Kenneth Chiu, 2022. "Epistasis Detection via the Joint Cumulant," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 514-532, December.
    20. Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-023-05812-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.