IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v80y2017i6d10.1007_s00184-017-0629-9.html
   My bibliography  Save this article

Adjusted Pearson Chi-Square feature screening for multi-classification with ultrahigh dimensional data

Author

Listed:
  • Lyu Ni

    (East China Normal University)

  • Fang Fang

    (East China Normal University)

  • Fangjiao Wan

    (East China Normal University)

Abstract

Huang et al. (J Bus Econ Stat 32:237–244, 2014) first proposed a Pearson Chi-Square based feature screening procedure tailored to multi-classification problem with ultrahigh dimensional categorical covariates, which is a common problem in practice but has seldom been discussed in the literature. However, their work establishes the sure screening property only in a limited setting. Moreover, the p value based adjustments when the number of categories involved by each covariate is different do not work well in several practical situations. In this paper, we propose an adjusted Pearson Chi-Square feature screening procedure and a modified method for tuning parameter selection. Theoretically, we establish the sure screening property of the proposed method in general settings. Empirically, the proposed method is more successful than Pearson Chi-Square feature screening in handling non-equal numbers of covariate categories in finite samples. Results of three simulation studies and one real data analysis are presented. Our work together with Huang et al. (J Bus Econ Stat 32:237–244, 2014) establishes a solid theoretical foundation and empirical evidence for the family of Pearson Chi-Square based feature screening methods.

Suggested Citation

  • Lyu Ni & Fang Fang & Fangjiao Wan, 2017. "Adjusted Pearson Chi-Square feature screening for multi-classification with ultrahigh dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 805-828, November.
  • Handle: RePEc:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0629-9
    DOI: 10.1007/s00184-017-0629-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-017-0629-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-017-0629-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rui Pan & Hansheng Wang & Runze Li, 2016. "Ultrahigh-Dimensional Multiclass Linear Discriminant Analysis by Pairwise Sure Independence Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 169-179, March.
    2. Hengjian Cui & Runze Li & Wei Zhong, 2015. "Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 630-641, June.
    3. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    4. Jianqing Fan & Yunbei Ma & Wei Dai, 2014. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Varying Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1270-1284, September.
    5. Lyu Ni & Fang Fang, 2016. "Entropy-based model-free feature screening for ultrahigh-dimensional multiclass classification," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 515-530, September.
    6. Danyang Huang & Runze Li & Hansheng Wang, 2014. "Feature Screening for Ultrahigh Dimensional Categorical Data With Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 237-244, April.
    7. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    8. Qing Mai & Hui Zou, 2013. "The Kolmogorov filter for variable screening in high-dimensional binary classification," Biometrika, Biometrika Trust, vol. 100(1), pages 229-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuaishuai Chen & Jun Lu, 2023. "Quantile-Composited Feature Screening for Ultrahigh-Dimensional Data," Mathematics, MDPI, vol. 11(10), pages 1-21, May.
    2. Sweata Sen & Damitri Kundu & Kiranmoy Das, 2023. "Variable selection for categorical response: a comparative study," Computational Statistics, Springer, vol. 38(2), pages 809-826, June.
    3. Yuan, Qingcong & Chen, Xianyan & Ke, Chenlu & Yin, Xiangrong, 2022. "Independence index sufficient variable screening for categorical responses," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    4. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.
    5. Yang, Baoying & Yin, Xiangrong & Zhang, Nan, 2019. "Sufficient variable selection using independence measures for continuous response," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 480-493.
    6. Ke, Chenlu & Yang, Wei & Yuan, Qingcong & Li, Lu, 2023. "Partial sufficient variable screening with categorical controls," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    7. Zhao, Shaofei & Fu, Guifang, 2022. "Distribution-free and model-free multivariate feature screening via multivariate rank distance correlation," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    8. Fengli Song & Peng Lai & Baohua Shen, 2020. "Robust composite weighted quantile screening for ultrahigh dimensional discriminant analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 799-820, October.
    9. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2020. "Model-free variable selection for conditional mean in regression," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    10. Xiong, Wei & Chen, Yaxian & Ma, Shuangge, 2023. "Unified model-free interaction screening via CV-entropy filter," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    11. He, Shengmei & Ma, Shuangge & Xu, Wangli, 2019. "A modified mean-variance feature-screening procedure for ultrahigh-dimensional discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 155-169.
    12. Lu, Jun & Lin, Lu & Wang, WenWu, 2021. "Partition-based feature screening for categorical data via RKHS embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    13. Randall Reese & Guifang Fu & Geran Zhao & Xiaotian Dai & Xiaotian Li & Kenneth Chiu, 2022. "Epistasis Detection via the Joint Cumulant," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 514-532, December.
    14. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    15. Lai, Peng & Song, Fengli & Chen, Kaiwen & Liu, Zhi, 2017. "Model free feature screening with dependent variable in ultrahigh dimensional binary classification," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 141-148.
    16. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    17. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    18. Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.
    19. Li, Xingxiang & Cheng, Guosheng & Wang, Liming & Lai, Peng & Song, Fengli, 2017. "Ultrahigh dimensional feature screening via projection," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 88-104.
    20. Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0629-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.