IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235236.html
   My bibliography  Save this article

Application of improved ELM algorithm in the prediction of earthquake casualties

Author

Listed:
  • Xing Huang
  • Mengjie Luo
  • Huidong Jin

Abstract

Background: Earthquake casualties prediction is a basic work of the emergency response. Traditional forecasting methods have strict requirements on sample data and lots of parameters are required to be set manually, which can result in poor results with low prediction accuracy and slow learning speed. Method: In this paper, the Extreme Leaning Machine (ELM) is introduced into the earthquake disaster casualty predictions with the purpose of improving the prediction accuracy. However, traditional ELM model still has the problems of poor network structure stability and low prediction accuracy. So an Adaptive Chaos Particle Swarm Optimization (ACPSO) is proposed to the optimize traditional ELM’s network parameters to enhance network stability and prediction accuracy, and the improved ELM model is applied to earthquake disaster casualty prediction. Results: The experimental results show that the earthquake disaster casualty prediction model based on ACPSO-ELM algorithm has better stability and prediction accuracy. Conclusion: ACPSO-ELM algorithm has better practicality and generalization in earthquake disaster casualty prediction.

Suggested Citation

  • Xing Huang & Mengjie Luo & Huidong Jin, 2020. "Application of improved ELM algorithm in the prediction of earthquake casualties," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
  • Handle: RePEc:plo:pone00:0235236
    DOI: 10.1371/journal.pone.0235236
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235236
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235236&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huang Xing & Zhou Zhonglin & Wang Shaoyu, 2015. "The prediction model of earthquake casuailty based on robust wavelet v-SVM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 717-732, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manhao Luo & Shuangyun Peng & Yanbo Cao & Jing Liu & Bangmei Huang, 2023. "Earthquake fatality prediction based on hybrid feature importance assessment: a case study in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3353-3376, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei, Liguo & Wang, Yanqing, 2022. "Demand prediction of emergency materials using case-based reasoning extended by the Dempster-Shafer theory," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    2. Muhammet Gul & Ali Fuat Guneri, 2016. "An artificial neural network-based earthquake casualty estimation model for Istanbul city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2163-2178, December.
    3. Camila Pareja Yale & Hugo Tsugunobu Yoshida Yoshizaki & Luiz Paulo Fávero, 2022. "A New Zero-Inflated Negative Binomial Multilevel Model for Forecasting the Demand of Disaster Relief Supplies in the State of Sao Paulo, Brazil," Mathematics, MDPI, vol. 10(22), pages 1-11, November.
    4. Huang Xing & Song Junyi & Huidong Jin, 2020. "The casualty prediction of earthquake disaster based on Extreme Learning Machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 873-886, July.
    5. Manhao Luo & Shuangyun Peng & Yanbo Cao & Jing Liu & Bangmei Huang, 2023. "Earthquake fatality prediction based on hybrid feature importance assessment: a case study in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3353-3376, April.
    6. Shao, Jianfang & Liang, Changyong & Liu, Yujia & Xu, Jian & Zhao, Shuping, 2021. "Relief demand forecasting based on intuitionistic fuzzy case-based reasoning," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    7. Chen, Weiyi & Zhang, Limao, 2022. "An automated machine learning approach for earthquake casualty rate and economic loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.