IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7038-d295885.html
   My bibliography  Save this article

Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea

Author

Listed:
  • Jihye Han

    (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

  • Soyoung Park

    (BK21 Plus Project of the Graduate School of Earth Environmental Hazards System, Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

  • Seongheon Kim

    (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

  • Sanghun Son

    (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

  • Seonghyeok Lee

    (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

  • Jinsoo Kim

    (Department of Spatial Information System, Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

Abstract

In this study, we performed seismic vulnerability assessment and mapping of the M L 5.8 Gyeongju Earthquake in Gyeongju, South Korea, as a case study. We applied logistic regression (LR) and four kernel models based on the support vector machine (SVM) learning method to derive suitable models for assessing seismic vulnerabilities; the results of each model were then mapped and evaluated. Dependent variables were quantified using buildings damaged in the 9.12 Gyeongju Earthquake, and independent variables were constructed and used as spatial databases by selecting 15 sub-indicators related to earthquakes. Success and prediction rates were calculated using receiver operating characteristic (ROC) curves. The success rates of the models (LR, SVM models based on linear, polynomial, radial basis function, and sigmoid kernels) were 0.652, 0.649, 0.842, 0.998, and 0.630, respectively, and the prediction rates were 0.714, 0.651, 0.804, 0.919, and 0.629, respectively. Among the five models, RBF-SVM showed the highest performance. Seismic vulnerability maps were created for each of the five models and were graded as safe, low, moderate, high, or very high. Finally, we examined the distribution of building classes among the 23 administrative districts of Gyeongju. The common vulnerable regions among all five maps were Jungbu-dong and Hwangnam-dong, and the common safe region among all five maps was Gangdong-myeon.

Suggested Citation

  • Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7038-:d:295885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saro Lee & Soo-Min Hong & Hyung-Sup Jung, 2017. "A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    2. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    3. Iuliana Armaş, 2012. "Multi-criteria vulnerability analysis to earthquake hazard of Bucharest, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1129-1156, September.
    4. Md Sohel Ahmed & Hiroshi Morita, 2018. "An Analysis of Housing Structures’ Earthquake Vulnerability in Two Parts of Dhaka City," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    5. Betül Şengezer & Atilla Ansal & Ömer Bilen, 2008. "Evaluation of parameters affecting earthquake damage by decision tree techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 547-568, December.
    6. KeumJi Kim & SeongHwan Yoon, 2018. "Assessment of Building Damage Risk by Natural Disasters in South Korea Using Decision Tree Analysis," Sustainability, MDPI, vol. 10(4), pages 1-22, April.
    7. Blake Walker & Cameron Taylor-Noonan & Alan Tabbernor & T’Brenn McKinnon & Harsimran Bal & Dan Bradley & Nadine Schuurman & John Clague, 2014. "A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1209-1222, November.
    8. Abdelheq Guettiche & Philippe Guéguen & Mostefa Mimoune, 2017. "Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1223-1245, April.
    9. Ismaël Riedel & Philippe Guéguen & Mauro Dalla Mura & Erwan Pathier & Thomas Leduc & Jocelyn Chanussot, 2015. "Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1111-1141, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    2. Jihye Han & Jinsoo Kim & Soyoung Park & Sanghun Son & Minji Ryu, 2020. "Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest," Sustainability, MDPI, vol. 12(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihye Han & Jinsoo Kim & Soyoung Park & Sanghun Son & Minji Ryu, 2020. "Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    2. Yuxin Gao & Xianrui Yu & Menghao Xi & Qiuhong Zhao, 2023. "Assessment of Vulnerability Caused by Earthquake Disasters Based on DEA: A Case Study of County-Level Units in Chinese Mainland," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    3. Jose Manuel Diaz-Sarachaga & Daniel Jato-Espino, 2020. "Analysis of vulnerability assessment frameworks and methodologies in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 437-457, January.
    4. Jian Ma & Anirudh Rao & Vitor Silva & Kai Liu & Ming Wang, 2021. "A township-level exposure model of residential buildings for mainland China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 389-423, August.
    5. Dieu Tien Bui & Ataollah Shirzadi & Ata Amini & Himan Shahabi & Nadhir Al-Ansari & Shahriar Hamidi & Sushant K. Singh & Binh Thai Pham & Baharin Bin Ahmad & Pezhman Taherei Ghazvinei, 2020. "A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    6. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    7. Md. Abul Kalam Azad & Abu Reza Md. Towfiqul Islam & Md. Siddiqur Rahman & Kurratul Ayen, 2021. "Development of novel hybrid machine learning models for monthly thunderstorm frequency prediction over Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1109-1135, August.
    8. Florin Pavel & Radu Vacareanu & Ileana Calotescu & Ana-Maria Sandulescu & Cristian Arion & Cristian Neagu, 2017. "Impact of spatial correlation of ground motions on seismic damage for residential buildings in Bucharest, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1167-1187, June.
    9. Peng Ye & Xueying Zhang & Ge Shi & Shuhui Chen & Zhiwen Huang & Wei Tang, 2020. "TKRM: A Formal Knowledge Representation Method for Typhoon Events," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    10. Xaimarie Hernández-Cruz & Saylisse Dávila, 2020. "Quantifying adaptive capacity to floods: an assessment of Rincón, PR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1537-1564, August.
    11. Eliana Fischer & Giovanni Barreca & Annalisa Greco & Francesco Martinico & Alessandro Pluchino & Andrea Rapisarda, 2023. "Seismic risk assessment of a large metropolitan area by means of simulated earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 117-153, August.
    12. Dingli Liu & Zhisheng Xu & Chuangang Fan, 2019. "Predictive analysis of fire frequency based on daily temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1175-1189, July.
    13. Xin Wei & Niaz Muhammad Shahani & Xigui Zheng, 2023. "Predictive Modeling of the Uniaxial Compressive Strength of Rocks Using an Artificial Neural Network Approach," Mathematics, MDPI, vol. 11(7), pages 1-17, March.
    14. Soyoung Park & Se-Yeong Hamm & Jinsoo Kim, 2019. "Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    15. Sunmin Lee & Yunjung Hyun & Moung-Jin Lee, 2019. "Groundwater Potential Mapping Using Data Mining Models of Big Data Analysis in Goyang-si, South Korea," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    16. Contreras, Diana & Bhamidipati, Srirama & Wilkinson, Sean, 2023. "Social vulnerability and spatial inequality in access to healthcare facilities: The case of the Santiago Metropolitan Region (RMS), Chile," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    17. Abdelheq Guettiche & Philippe Guéguen & Mostefa Mimoune, 2017. "Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1223-1245, April.
    18. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    19. Majid Mohammady, 2023. "Badland erosion susceptibility mapping using machine learning data mining techniques, Firozkuh watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 703-721, May.
    20. Milad Moradi & Mahmoud Reza Delavar & Behzad Moshiri, 2017. "A GIS-based multi-criteria analysis model for earthquake vulnerability assessment using Choquet integral and game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1377-1398, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7038-:d:295885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.