IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i1d10.1007_s11069-022-05694-0.html
   My bibliography  Save this article

Compound effects of rain, storm surge, and river discharge on coastal flooding during Hurricane Irene and Tropical Storm Lee (2011) in the Mid-Atlantic region: coupled atmosphere-wave-ocean model simulation and observations

Author

Listed:
  • Brandon W. Kerns

    (University of Washington)

  • Shuyi S. Chen

    (University of Washington)

Abstract

Coastal flooding from landfalling tropical cyclones (TCs) is a major hazard with increasing severity in a warming climate and rising seas. It is difficult to predict because of highly complex compound effects of TC induced heavy rainfall, storm surge, and river discharge. This can be further exacerbated by sequential TCs such as Hurricane Irene and Tropical Storm Lee in late August to mid-September 2011, which caused major coastal flooding in the Mid-Atlantic region. This study focuses on better understanding and improving prediction of the compound effects of rain, storm surge, and river discharge using a high-resolution coupled atmosphere-wave-ocean model, namely the Unified Wave INterface–Coupled Model (UWIN-CM) and observations from NDBC buoys, NOAA tide gauges, and USGS estuary sites. UWIN-CM effectively captured the storm track and intensity, surface winds, surface waves, and ocean surface evolution associated with the two storms, compared with the observations. Compound effects of wind, rain, storm surge, and river-stream discharge on coastal flooding are investigated. The storm surge from Hurricane Irene was observed along the coasts Maryland, New Jersey, and New York, Delaware Bay, the lower reaches of the Delaware River, and in lower Chesapeake Bay. Strong onshore wind pushes water upstream, which has the highest compound effects on coastal flooding. Heavy rain and river-stream discharge into the coastal zone contributes mainly to locations upstream away from the open bay water. A new, indirect machine learning method of estimating the spatial extent of coastal flooding using simulated coastal sea surface height is shown.

Suggested Citation

  • Brandon W. Kerns & Shuyi S. Chen, 2023. "Compound effects of rain, storm surge, and river discharge on coastal flooding during Hurricane Irene and Tropical Storm Lee (2011) in the Mid-Atlantic region: coupled atmosphere-wave-ocean model simu," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 693-726, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05694-0
    DOI: 10.1007/s11069-022-05694-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05694-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05694-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanluan Lin & Ming Zhao & Minghua Zhang, 2015. "Tropical cyclone rainfall area controlled by relative sea surface temperature," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
    2. S. M. Glenn & T. N. Miles & G. N. Seroka & Y. Xu & R. K. Forney & F. Yu & H. Roarty & O. Schofield & J. Kohut, 2016. "Stratified coastal ocean interactions with tropical cyclones," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    3. Judith Wolf, 2009. "Coastal flooding: impacts of coupled wave–surge–tide models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(2), pages 241-260, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lianjie Qin & Laiyin Zhu & Baoyin Liu & Zixuan Li & Yugang Tian & Gordon Mitchell & Shifei Shen & Wei Xu & Jianguo Chen, 2024. "Global expansion of tropical cyclone precipitation footprint," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Wen-Cheng Liu & Wei-Che Huang, 2021. "Tide–surge and wave interaction around the Taiwan coast: insight from Typhoon Nepartak in 2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1881-1904, June.
    3. Erdem Karaca & Hesaam Aslani, 2016. "Review of two Japan Typhoon catastrophe models for commercial and industrial properties," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 19-40, August.
    4. Shinto Roose & R. S. Ajayamohan & Pallav Ray & Shang-Ping Xie & C. T. Sabeerali & M. Mohapatra & S. Taraphdar & K. Mohanakumar & M. Rajeevan, 2023. "Pacific decadal oscillation causes fewer near-equatorial cyclones in the North Indian Ocean," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Hashemi, M. Reza & Neill, Simon P. & Robins, Peter E. & Davies, Alan G. & Lewis, Matt J., 2015. "Effect of waves on the tidal energy resource at a planned tidal stream array," Renewable Energy, Elsevier, vol. 75(C), pages 626-639.
    6. S. Rohini & S. A. Sannasiraj & V. Sundar, 2023. "Investigation of morphodynamic evolution in a shelf region of Bay of Bengal under extreme conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3043-3062, April.
    7. Madeleine Lopeman & George Deodatis & Guillermo Franco, 2015. "Extreme storm surge hazard estimation in lower Manhattan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 355-391, August.
    8. Véronique M. Morin & Pennung Warnitchai & Sutat Weesakul, 2016. "Storm surge hazard in Manila Bay: Typhoon Nesat (Pedring) and the SW monsoon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1569-1588, April.
    9. Hashemi, M. Reza & Grilli, Stéphan T. & Neill, Simon P., 2016. "A simplified method to estimate tidal current effects on the ocean wave power resource," Renewable Energy, Elsevier, vol. 96(PA), pages 257-269.
    10. Tsun-Hua Yang & Wen-Cheng Liu, 2020. "A General Overview of the Risk-Reduction Strategies for Floods and Droughts," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    11. Shoude Guan & Fei-Fei Jin & Jiwei Tian & I-I Lin & Iam-Fei Pun & Wei Zhao & John Huthnance & Zhao Xu & Wenju Cai & Zhao Jing & Lei Zhou & Ping Liu & Yihan Zhang & Zhiwei Zhang & Chun Zhou & Qingxuan Y, 2024. "Ocean internal tides suppress tropical cyclones in the South China Sea," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Mohammad Asad Hussain & Yoshimitsu Tajima, 2017. "Numerical investigation of surge–tide interactions in the Bay of Bengal along the Bangladesh coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 669-694, March.
    13. Soroush Kouhi & M. Reza Hashemi & Malcolm Spaulding & Tetsu Hara, 2022. "Modeling the impact of sea level rise on maximum water elevation during storm surge events: a closer look at coastal embayments," Climatic Change, Springer, vol. 171(3), pages 1-20, April.
    14. Mariamawit Borga & Burak F. Tanyu & Celso M. Ferreira & Juan L. Garzon & Michael Onufrychuk, 2017. "A geospatial framework to estimate depth of scour under buildings due to storm surge in coastal areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1285-1311, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05694-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.