IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48003-y.html
   My bibliography  Save this article

Ocean internal tides suppress tropical cyclones in the South China Sea

Author

Listed:
  • Shoude Guan

    (Ocean University of China
    Laoshan Laboratory)

  • Fei-Fei Jin

    (University of Hawaii at Manoa)

  • Jiwei Tian

    (Ocean University of China
    Laoshan Laboratory)

  • I-I Lin

    (National Taiwan University)

  • Iam-Fei Pun

    (National Central University)

  • Wei Zhao

    (Ocean University of China
    Laoshan Laboratory)

  • John Huthnance

    (National Oceanography Centre)

  • Zhao Xu

    (Ocean University of China
    Laoshan Laboratory)

  • Wenju Cai

    (Ocean University of China
    Laoshan Laboratory
    CSIRO Oceans and Atmosphere
    Xiamen University)

  • Zhao Jing

    (Ocean University of China
    Laoshan Laboratory)

  • Lei Zhou

    (Shanghai Jiao Tong University)

  • Ping Liu

    (Ocean University of China)

  • Yihan Zhang

    (Ocean University of China)

  • Zhiwei Zhang

    (Ocean University of China
    Laoshan Laboratory)

  • Chun Zhou

    (Ocean University of China
    Laoshan Laboratory)

  • Qingxuan Yang

    (Ocean University of China
    Laoshan Laboratory)

  • Xiaodong Huang

    (Ocean University of China
    Laoshan Laboratory)

  • Yijun Hou

    (Chinese Academy of Sciences)

  • Jinbao Song

    (Zhejiang University)

Abstract

Tropical Cyclones (TCs) are devastating natural disasters. Analyzing four decades of global TC data, here we find that among all global TC-active basins, the South China Sea (SCS) stands out as particularly difficult ocean for TCs to intensify, despite favorable atmosphere and ocean conditions. Over the SCS, TC intensification rate and its probability for a rapid intensification (intensification by ≥ 15.4 m s−1 day−1) are only 1/2 and 1/3, respectively, of those for the rest of the world ocean. Originating from complex interplays between astronomic tides and the SCS topography, gigantic ocean internal tides interact with TC-generated oceanic near-inertial waves and induce a strong ocean cooling effect, suppressing the TC intensification. Inclusion of this interaction between internal tides and TC in operational weather prediction systems is expected to improve forecast of TC intensity in the SCS and in other regions where strong internal tides are present.

Suggested Citation

  • Shoude Guan & Fei-Fei Jin & Jiwei Tian & I-I Lin & Iam-Fei Pun & Wei Zhao & John Huthnance & Zhao Xu & Wenju Cai & Zhao Jing & Lei Zhou & Ping Liu & Yihan Zhang & Zhiwei Zhang & Chun Zhou & Qingxuan Y, 2024. "Ocean internal tides suppress tropical cyclones in the South China Sea," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48003-y
    DOI: 10.1038/s41467-024-48003-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48003-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48003-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Kieran Bhatia & Alexander Baker & Wenchang Yang & Gabriel Vecchi & Thomas Knutson & Hiroyuki Murakami & James Kossin & Kevin Hodges & Keith Dixon & Benjamin Bronselaer & Carolyn Whitlock, 2022. "A potential explanation for the global increase in tropical cyclone rapid intensification," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Matthew H. Alford & Thomas Peacock & Jennifer A. MacKinnon & Jonathan D. Nash & Maarten C. Buijsman & Luca R. Centurioni & Shenn-Yu Chao & Ming-Huei Chang & David M. Farmer & Oliver B. Fringer & Ke-Hs, 2015. "The formation and fate of internal waves in the South China Sea," Nature, Nature, vol. 521(7550), pages 65-69, May.
    4. S. M. Glenn & T. N. Miles & G. N. Seroka & Y. Xu & R. K. Forney & F. Yu & H. Roarty & O. Schofield & J. Kohut, 2016. "Stratified coastal ocean interactions with tropical cyclones," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    5. Mark D. Powell & Peter J. Vickery & Timothy A. Reinhold, 2003. "Reduced drag coefficient for high wind speeds in tropical cyclones," Nature, Nature, vol. 422(6929), pages 279-283, March.
    6. Matthew H. Alford & Thomas Peacock & Jennifer A. MacKinnon & Jonathan D. Nash & Maarten C. Buijsman & Luca R. Centurioni & Shenn-Yu Chao & Ming-Huei Chang & David M. Farmer & Oliver B. Fringer & Ke-Hs, 2015. "Correction: Corrigendum: The formation and fate of internal waves in the South China Sea," Nature, Nature, vol. 528(7580), pages 152-152, December.
    7. Kieran Bhatia & Alexander Baker & Wenchang Yang & Gabriel Vecchi & Thomas Knutson & Hiroyuki Murakami & James Kossin & Kevin Hodges & Keith Dixon & Benjamin Bronselaer & Carolyn Whitlock, 2022. "Author Correction: A potential explanation for the global increase in tropical cyclone rapid intensification," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    8. Kerry A. Emanuel, 1999. "Thermodynamic control of hurricane intensity," Nature, Nature, vol. 401(6754), pages 665-669, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    2. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    4. Debashis Paul & Jagabandhu Panda & Ashish Routray, 2022. "Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 261-289, October.
    5. Sok Kuh Kang & Sung-Hun Kim & I.-I. Lin & Young-Hyang Park & Yumi Choi & Isaac Ginis & Joseph Cione & Ji Yun Shin & Eun Jin Kim & Kyeong Ok Kim & Hyoun Woo Kang & Jae-Hyoung Park & Jean-Raymond Bidlot, 2024. "The North Equatorial Current and rapid intensification of super typhoons," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Iam-Fei Pun & Johnny C. L. Chan & I.-I. Lin & Kelvin T. F. Chan & James F. Price & Dong Shan Ko & Chun-Chi Lien & Yu-Lun Wu & Hsiao-Ching Huang, 2019. "Rapid Intensification of Typhoon Hato (2017) over Shallow Water," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    7. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    8. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    9. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    10. Brokovich, E. & Schwarz, A.M. & Oeta, J., 2012. "Building social and ecological resilience to climate change in Roviana, Solomon Islands: PASAP country activity for Solomon Islands: Brief review: climate change trends and projections for Solomon Isl," Monographs, The WorldFish Center, number 40178, April.
    11. Shibly Shahrier & Koji Kotani, 2016. "Labor Donation Or Money Donation? Pro-Sociality On Prevention Of Natural Disasters In A Case Of Cyclone Aila, Bangladesh," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(01), pages 1-26, March.
    12. Lianjie Qin & Laiyin Zhu & Baoyin Liu & Zixuan Li & Yugang Tian & Gordon Mitchell & Shifei Shen & Wei Xu & Jianguo Chen, 2024. "Global expansion of tropical cyclone precipitation footprint," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    14. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    15. Pelli, Martino & Tschopp, Jeanne & Bezmaternykh, Natalia & Eklou, Kodjovi M., 2023. "In the eye of the storm: Firms and capital destruction in India," Journal of Urban Economics, Elsevier, vol. 134(C).
    16. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," PSE Working Papers halshs-00564946, HAL.
    17. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    18. Nicola Ranger & Falk Nieh�rster, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," GRI Working Papers 51, Grantham Research Institute on Climate Change and the Environment.
    19. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    20. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio -Empirical Evidence for a Developing Economy," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242411, Verein für Socialpolitik / German Economic Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48003-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.