IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i7p1397-d1192363.html
   My bibliography  Save this article

Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm

Author

Listed:
  • Ahmed Cemiloglu

    (School of Information Engineering, Yancheng Teachers University, Yancheng 224002, China)

  • Licai Zhu

    (School of Information Engineering, Yancheng Teachers University, Yancheng 224002, China)

  • Agab Bakheet Mohammednour

    (Department of Control System Engineering, Al-Neelain University, Khartoum 12702, Sudan)

  • Mohammad Azarafza

    (Geotechnical Department, Faculty of Civil Engineering, University of Tabriz, Tabriz 5166616471, Iran)

  • Yaser Ahangari Nanehkaran

    (School of Information Engineering, Yancheng Teachers University, Yancheng 224002, China)

Abstract

Landslide susceptibility assessment is the globally approved procedure to prepare geo-hazard maps of landslide-prone areas, which are highly used in urban management and minimizing the possible disasters due to landslides. Multiple approaches to providing susceptibility maps for landslides have one specification. Logistic regression is a statistical-based model that investigates the probabilities of the events which is received extensive success in landslide susceptibility assessment. The presented study attempted to use a logistic regression application to prepare the Maragheh County hazard risk map. In this regard, several predisposing factors (e.g., elevation, slope aspect, slope angle, rainfall, land use, lithology, weathering, distance from faults, distance from the river, distance from the road, and distance from cities) are identified as main responsible for landslide occurrence and 20 historical sliding events which used to prepare hazard risk maps. As verification, the models were controlled by operating relative characteristics (ROC) curves which reported the overall accuracy for susceptibility assessment. According to the results, the region is located in a moderate to high-hazard risk zone. The north and northeast parts of Maragheh County show high suitability for landslides. Verification results of the model indicated that the AUC estimated for the training set is 0.885, and the AUC estimated for the testing set is 0.769. To justify the model, the results of the LR were comparatively checked with several benchmark learning models. Results indicated that LR model performance is reasonable.

Suggested Citation

  • Ahmed Cemiloglu & Licai Zhu & Agab Bakheet Mohammednour & Mohammad Azarafza & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm," Land, MDPI, vol. 12(7), pages 1-20, July.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1397-:d:1192363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/7/1397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/7/1397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Discacciati & Nicola Orsini & Sander Greenland, 2015. "Approximate Bayesian logistic regression via penalized likelihood by data augmentation," Stata Journal, StataCorp LP, vol. 15(3), pages 712-736, September.
    2. Nussaïbah B. Raja & Ihsan Çiçek & Necla Türkoğlu & Olgu Aydin & Akiyuki Kawasaki, 2017. "Landslide susceptibility mapping of the Sera River Basin using logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1323-1346, February.
    3. Sean M. O'Brien & David B. Dunson, 2004. "Bayesian Multivariate Logistic Regression," Biometrics, The International Biometric Society, vol. 60(3), pages 739-746, September.
    4. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    5. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatiha Debiche & Mohammed Amin Benbouras & Alexandru-Ionut Petrisor & Lyes Mohamed Baba Ali & Abdelghani Leghouchi, 2024. "Advancing Landslide Susceptibility Mapping in the Medea Region Using a Hybrid Metaheuristic ANFIS Approach," Land, MDPI, vol. 13(6), pages 1-29, June.
    2. Yanli Wang & Yaser A. Nanehkaran, 2024. "GIS-based fuzzy logic technique for mapping landslide susceptibility analyzing in a coastal soft rock zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10889-10921, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    2. Sandipta Debanshi & Swades Pal, 2020. "Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 883-914, February.
    3. Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
    4. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    5. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    6. Constandina Koki & Loukia Meligkotsidou & Ioannis Vrontos, 2020. "Forecasting under model uncertainty: Non‐homogeneous hidden Markov models with Pòlya‐Gamma data augmentation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 580-598, July.
    7. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    8. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    9. Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    10. Kamila Pawluszek & Andrzej Borkowski, 2017. "Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 919-952, March.
    11. Michele Marconi & Beatrice Gatto & Michele Magni & Fausto Marincioni, 2016. "A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 329-346, March.
    12. Ying-Jen Chang & Kuo-Chuan Hung & Li-Kai Wang & Chia-Hung Yu & Chao-Kun Chen & Hung-Tze Tay & Jhi-Joung Wang & Chung-Feng Liu, 2021. "A Real-Time Artificial Intelligence-Assisted System to Predict Weaning from Ventilator Immediately after Lung Resection Surgery," IJERPH, MDPI, vol. 18(5), pages 1-14, March.
    13. Mária Barančoková & Matej Šošovička & Peter Barančok & Peter Barančok, 2021. "Predictive Modelling of Landslide Susceptibility in the Western Carpathian Flysch Zone," Land, MDPI, vol. 10(12), pages 1-28, December.
    14. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    15. Weidong Wang & Zhuolei He & Zheng Han & Yange Li & Jie Dou & Jianling Huang, 2020. "Mapping the susceptibility to landslides based on the deep belief network: a case study in Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3239-3261, September.
    16. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    17. Nussaïbah B. Raja & Ihsan Çiçek & Necla Türkoğlu & Olgu Aydin & Akiyuki Kawasaki, 2017. "Landslide susceptibility mapping of the Sera River Basin using logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1323-1346, February.
    18. Vana-Gür, Laura, 2024. "Multivariate ordinal regression for multiple repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    19. Asmita Ahmad & Meutia Farida & Nirmala Juita & Muh Jayadi, 2023. "Soil micromorphology for modeling spatial on landslide susceptibility mapping: a case study in Kelara Subwatershed, Jeneponto Regency of South Sulawesi, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1445-1462, September.
    20. Shahab S. Band & Saeid Janizadeh & Sunil Saha & Kaustuv Mukherjee & Saeid Khosrobeigi Bozchaloei & Artemi Cerdà & Manouchehr Shokri & Amirhosein Mosavi, 2020. "Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data," Land, MDPI, vol. 9(10), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1397-:d:1192363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.