IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v111y2022i1d10.1007_s11069-021-05071-3.html
   My bibliography  Save this article

Amplification of soil moisture deficit and high temperature in a drought-heatwave co-occurrence in southwestern China

Author

Listed:
  • Lei Jiang

    (Hong Kong Baptist University
    Nanjing University of Information Science and Technology)

  • Yongqin David Chen

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong)

  • Jianfeng Li

    (Hong Kong Baptist University)

  • Cancan Liu

    (The Chinese University of Hong Kong)

Abstract

Co-occurrence events of droughts and heatwaves characterized by abnormal low soil moisture (SM) and high temperatures may cause more significant impacts on society and natural ecosystems than their individual occurrences. In addition to large-scale weather systems, regional land–atmosphere interactions significantly affect the development of co-occurrence events. In this study, weather research and forecasting model (WRF) was employed to evaluate the contributions of land–atmosphere interactions to a short-term drought-heatwave co-occurrence, which was the onset of the 2009/2010 extreme drought in southwestern China. The numerical experiments with perturbed SM show that the drought with SM deficit amplifies the heatwave severity, especially the afternoon's high temperature, by reducing latent cooling. The drought also tends to self-enhance through SM-precipitation feedback, as the simulated precipitation given lower SM is consistently less than the control run. The hotter/colder atmosphere experiments show that the heatwave also substantially affects the drought by altering land surface fluxes and atmospheric fields. Increases in latent heat in a hotter atmosphere reduce SM. Compared to the simulations for a colder atmosphere, simulated precipitation under a hotter atmosphere tends to be lower in a longer period before stronger precipitation occurs at the late stage of the concurrent event.

Suggested Citation

  • Lei Jiang & Yongqin David Chen & Jianfeng Li & Cancan Liu, 2022. "Amplification of soil moisture deficit and high temperature in a drought-heatwave co-occurrence in southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 641-660, March.
  • Handle: RePEc:spr:nathaz:v:111:y:2022:i:1:d:10.1007_s11069-021-05071-3
    DOI: 10.1007/s11069-021-05071-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05071-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05071-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    2. Christoph Schär & Pier Luigi Vidale & Daniel Lüthi & Christoph Frei & Christian Häberli & Mark A. Liniger & Christof Appenzeller, 2004. "The role of increasing temperature variability in European summer heatwaves," Nature, Nature, vol. 427(6972), pages 332-336, January.
    3. Christoph Schär & Gerd Jendritzky, 2004. "Hot news from summer 2003," Nature, Nature, vol. 432(7017), pages 559-560, December.
    4. Jianfeng Li & Yongqin David Chen & Thian Yew Gan & Ngar-Cheung Lau, 2018. "Elevated increases in human-perceived temperature under climate warming," Nature Climate Change, Nature, vol. 8(1), pages 43-47, January.
    5. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    6. Ying Sun & Xuebin Zhang & Francis W. Zwiers & Lianchun Song & Hui Wan & Ting Hu & Hong Yin & Guoyu Ren, 2014. "Rapid increase in the risk of extreme summer heat in Eastern China," Nature Climate Change, Nature, vol. 4(12), pages 1082-1085, December.
    7. Lei Ye & Ke Shi & Zhuohang Xin & Chao Wang & Chi Zhang, 2019. "Compound Droughts and Heat Waves in China," Sustainability, MDPI, vol. 11(12), pages 1-14, June.
    8. Jane Qiu, 2010. "China drought highlights future climate threats," Nature, Nature, vol. 465(7295), pages 142-143, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    2. Berlemann, Michael & Eurich, Marina, 2021. "Natural hazard risk and life satisfaction – Empirical evidence for hurricanes," Ecological Economics, Elsevier, vol. 190(C).
    3. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    4. Shahzada Adnan & Kalim Ullah, 2020. "Development of drought hazard index for vulnerability assessment in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2989-3010, September.
    5. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    6. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    7. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    8. Hongli Wang & Yongxiang Zhang & Xuemei Shao, 2021. "A tree-ring-based drought reconstruction from 1466 to 2013 CE for the Aksu area, western China," Climatic Change, Springer, vol. 165(1), pages 1-16, March.
    9. Inga Dailidienė & Inesa Servaitė & Remigijus Dailidė & Erika Vasiliauskienė & Lolita Rapolienė & Ramūnas Povilanskas & Donatas Valiukas, 2023. "Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities)," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    10. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    11. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    12. Kaiwen Li & Ming Wang & Kai Liu, 2021. "The Study on Compound Drought and Heatwave Events in China Using Complex Networks," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    13. Pere Quintana-Seguí & Anaïs Barella-Ortiz & Sabela Regueiro-Sanfiz & Gonzalo Miguez-Macho, 2020. "The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2135-2156, May.
    14. Araneda-Cabrera, Ronnie J. & Bermúdez, María & Puertas, Jerónimo, 2021. "Assessment of the performance of drought indices for explaining crop yield variability at the national scale: Methodological framework and application to Mozambique," Agricultural Water Management, Elsevier, vol. 246(C).
    15. Corwin, D.L. & Scudiero, E. & Zaccaria, D., 2022. "Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation," Agricultural Water Management, Elsevier, vol. 269(C).
    16. Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
    17. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    18. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    19. Mkaddem, Chamseddine & Mahjoubi, Soufiane, 2022. "Climate change and its impact on water consumption in Tunisia: Evidence from ARDL approach," MPRA Paper 115658, University Library of Munich, Germany, revised Dec 2022.
    20. Linze Li & Chengsheng Jiang & Raghu Murtugudde & Xin-Zhong Liang & Amir Sapkota, 2021. "Global Population Exposed to Extreme Events in the 150 Most Populated Cities of the World: Implications for Public Health," IJERPH, MDPI, vol. 18(3), pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:1:d:10.1007_s11069-021-05071-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.