IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v108y2021i1d10.1007_s11069-021-04678-w.html
   My bibliography  Save this article

Remote sensing-based operational modeling of fuel ignitability in Hyrcanian mixed forest, Iran

Author

Listed:
  • Hamed Adab

    (Hakim Sabzevari University)

  • Kasturi Devi Kanniah

    (Universiti Teknologi Malaysia
    Universiti Teknologi Malaysia)

  • Karim Solaimani

    (Sari Agricultural Sciences and Natural Resources University)

Abstract

To date, the efficiency and effectiveness of early warning systems of satellite imagery for preventing and mitigating wildfire remain a challenging issue. The heat of pre-ignition ( $$Q_{{{\text{ig}}}}$$ Q ig ) can be an index of fire likelihood, which is further enhanced with remotely sensed data, active fire data, and fuels information for operational application of satellite imagery in fire early warning systems. $$Q_{{{\text{ig}}}}$$ Q ig is a prerequisite for forest fires by the side of ignition sources and weather. This study analyzed the effect of $$Q_{{{\text{ig}}}}$$ Q ig variation on fire occurrences to develop a remote sensing-based initial fire likelihood index for identifying areas that have a high probability of fire. In this study, $$Q_{{{\text{ig}}}}$$ Q ig of Rothermel’s fire spread model daily data is retrieved at 1 km pixels from MODIS data. MODIS active fire products were used to interpret the $$Q_{{{\text{ig}}}}$$ Q ig of fuels for 10 days before the days of fire occurrences in November 2010 to determine the pre-fire conditions. A formula for converting $$Q_{{{\text{ig}}}}$$ Q ig into an initial fire likelihood index (IFLI) was then used by binary logistic regression method. Analyses show that there was a positive association between suggested IFLI and fire occurrences during the study period with a fair diagnostic accuracy of 92%, and 80% for dead and live fuels, respectively. Mann–kendall test suggested that there are significant trends in the fuel moisture content time-series for both live and dead fuels. Further analysis using the Hosmer–Lemeshow test represents that the models showed an acceptable fit. The suggested IFLI is an effective tool for fire management decision-making whenever a near real-time fire likelihood is required.

Suggested Citation

  • Hamed Adab & Kasturi Devi Kanniah & Karim Solaimani, 2021. "Remote sensing-based operational modeling of fuel ignitability in Hyrcanian mixed forest, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 253-283, August.
  • Handle: RePEc:spr:nathaz:v:108:y:2021:i:1:d:10.1007_s11069-021-04678-w
    DOI: 10.1007/s11069-021-04678-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04678-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04678-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G.L. Andersen, 1998. "Classification and Estimation of Forest and Vegetation Variables in Optical High Resolution Satellites: A Review of Methodologies," Working Papers ir98085, International Institute for Applied Systems Analysis.
    2. Hamed Adab, 2017. "Landfire hazard assessment in the Caspian Hyrcanian forest ecoregion with the long-term MODIS active fire data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1807-1825, July.
    3. Xiaowei Li & Gang Zhao & Xiubo Yu & Qiang Yu, 2014. "A comparison of forest fire indices for predicting fire risk in contrasting climates in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1339-1356, January.
    4. Muzy, A. & Nutaro, J.J. & Zeigler, B.P. & Coquillard, P., 2008. "Modeling and simulation of fire spreading through the activity tracking paradigm," Ecological Modelling, Elsevier, vol. 219(1), pages 212-225.
    5. Hamed Adab & Kasturi Kanniah & Karim Solaimani, 2013. "Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1723-1743, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    2. Abolfazl Jaafari & Omid Rahmati & Eric K. Zenner & Davood Mafi-Gholami, 2022. "Anthropogenic activities amplify wildfire occurrence in the Zagros eco-region of western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 457-473, October.
    3. Osama Ashraf Mohammed & Sasan Vafaei & Mehdi Mirzaei Kurdalivand & Sabri Rasooli & Chaolong Yao & Tongxin Hu, 2022. "A Comparative Study of Forest Fire Mapping Using GIS-Based Data Mining Approaches in Western Iran," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    4. Ze-Nian Wang & Jun Chen & Wen-Chieh Cheng & Arul Arulrajah & Suksun Horpibulsuk, 2018. "Investigation into the tempo-spatial distribution of recent fire hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1889-1907, July.
    5. Ali Akbar JAFARZADEH & Ali MAHDAVI & Heydar JAFARZADEH, 2017. "Evaluation of forest fire risk using the Apriori algorithm and fuzzy c-means clustering," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(8), pages 370-380.
    6. Faisal, Abdullah Al & Kafy, Abdulla - Al & Afroz, Farzana & Rahaman, Zullyadini A., 2023. "Exploring and forecasting spatial and temporal patterns of fire hazard risk in Nepal's tiger conservation zones," Ecological Modelling, Elsevier, vol. 476(C).
    7. André Padrão & Lia Duarte & Ana Cláudia Teodoro, 2022. "A GIS Plugin for Susceptibility Modeling: Case Study of Wildfires in Vila Nova de Foz Côa," Land, MDPI, vol. 11(7), pages 1-21, July.
    8. Sarkawt G. Salar & Arsalan Ahmed Othman & Sabri Rasooli & Salahalddin S. Ali & Zaid T. Al-Attar & Veraldo Liesenberg, 2022. "GIS-Based Modeling for Vegetated Land Fire Prediction in Qaradagh Area, Kurdistan Region, Iraq," Sustainability, MDPI, vol. 14(10), pages 1-31, May.
    9. Hamed Adab, 2017. "Landfire hazard assessment in the Caspian Hyrcanian forest ecoregion with the long-term MODIS active fire data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1807-1825, July.
    10. Dingli Liu & Zhisheng Xu & Chuangang Fan, 2019. "Predictive analysis of fire frequency based on daily temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1175-1189, July.
    11. Olimpia Smaranda Mintaș & Daniel Mierliță & Octavian Berchez & Alina Stanciu & Alina Osiceanu & Adrian Gheorghe Osiceanu, 2022. "Analysis of the Sustainability of Livestock Farms in the Area of the Southwest of Bihor County to Climate Change," Sustainability, MDPI, vol. 14(14), pages 1-32, July.
    12. José Manuel Zúñiga-Vásquez & Marín Pompa-García, 2019. "The occurrence of forest fires in Mexico presents an altitudinal tendency: a geospatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 213-224, March.
    13. Gianluigi Busico & Elisabetta Giuditta & Nerantzis Kazakis & Nicolò Colombani, 2019. "A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    14. Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
    15. Roghayeh Jahdi & Michele Salis & Fermin J. Alcasena & Mahdi Arabi & Bachisio Arca & Pierpaolo Duce, 2020. "Evaluating landscape-scale wildfire exposure in northwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 911-932, April.
    16. Anuj Tiwari & Mohammad Shoab & Abhilasha Dixit, 2021. "GIS-based forest fire susceptibility modeling in Pauri Garhwal, India: a comparative assessment of frequency ratio, analytic hierarchy process and fuzzy modeling techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1189-1230, January.
    17. Ghafar Salavati & Ebrahim Saniei & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "Wildfire Risk Forecasting Using Weights of Evidence and Statistical Index Models," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    18. Carlos Díaz‐Avalos & Pablo Juan, 2022. "Modeling the spatial evolution wildfires using random spread process," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    19. Reshma T. Vilasan & Vijay S. Kapse, 2022. "Evaluation of the prediction capability of AHP and F-AHP methods in flood susceptibility mapping of Ernakulam district (India)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1767-1793, June.
    20. Nikolay Baranovskiy & Aleksey Malinin, 2020. "Mathematical Simulation of Forest Fire Impact on Industrial Facilities and Wood-Based Buildings," Sustainability, MDPI, vol. 12(13), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:108:y:2021:i:1:d:10.1007_s11069-021-04678-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.