IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i3d10.1007_s11069-020-04497-5.html
   My bibliography  Save this article

An empirical study on Twitter’s use and crisis retweeting dynamics amid Covid-19

Author

Listed:
  • Bairong Wang

    (Shanghai Maritime University)

  • Bin Liu

    (Shanghai Maritime University)

  • Qi Zhang

    (Shanghai Maritime University)

Abstract

This study conducts an analysis on topics of the most diffused tweets and retweeting dynamics of crisis information amid Covid-19 to provide insights into how Twitter is used by the public and how crisis information is diffused on Twitter amid this pandemic. Results show that Twitter is first and foremost used as a news seeking and sharing platform with more than $$70\%$$ 70 % of the most diffused tweets being related to news and comments on crisis updates. As for the retweeting dynamics, our results show an almost immediate response from Twitter users, with some first retweets occurring as quickly as within 2 s and the vast majority $$(90\%)$$ ( 90 % ) of them done within 10 min. Nearly $$86\%$$ 86 % of the retweeting processes could have $$75\%$$ 75 % of their retweets finished within 24 h, indicating a 1-day information value of tweets. Distribution of retweeting behaviors could be modeled by Power law, Weibull, and Log normal in this study, but still there are $$20\%$$ 20 % original tweets whose retweeting distributions left unexplained. Results of retweeting community analysis show that following retweeters contribute to nearly $$50\%$$ 50 % of the retweets. In addition, the retweeting contribution of verified Twitter users is significantly $$(P

Suggested Citation

  • Bairong Wang & Bin Liu & Qi Zhang, 2021. "An empirical study on Twitter’s use and crisis retweeting dynamics amid Covid-19," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2319-2336, July.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:3:d:10.1007_s11069-020-04497-5
    DOI: 10.1007/s11069-020-04497-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04497-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04497-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bairong Wang & Jun Zhuang, 2017. "Crisis information distribution on Twitter: a content analysis of tweets during Hurricane Sandy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 161-181, October.
    2. Cynthia Chew & Gunther Eysenbach, 2010. "Pandemics in the Age of Twitter: Content Analysis of Tweets during the 2009 H1N1 Outbreak," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ammar Redza Ahmad Rizal & Shahrina Md Nordin & Wan Fatimah Wan Ahmad & Muhammad Jazlan Ahmad Khiri & Siti Haslina Hussin, 2022. "How Does Social Media Influence People to Get Vaccinated? The Elaboration Likelihood Model of a Person’s Attitude and Intention to Get COVID-19 Vaccines," IJERPH, MDPI, vol. 19(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis-Millán González & José Devís-Devís & Maite Pellicer-Chenoll & Miquel Pans & Alberto Pardo-Ibañez & Xavier García-Massó & Fernanda Peset & Fernanda Garzón-Farinós & Víctor Pérez-Samaniego, 2021. "The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    2. Boonyanit Mathayomchan & Viriya Taecharungroj & Walanchalee Wattanacharoensil, 2023. "Evolution of COVID-19 tweets about Southeast Asian Countries: topic modelling and sentiment analyses," Place Branding and Public Diplomacy, Palgrave Macmillan, vol. 19(3), pages 317-334, September.
    3. Elanor Colleoni & Nuccio Ludovico & Illia Laura & Ravindran Kiron, 2021. "Does Sharing Economy Have a Moral Capital? Comparing Semantic Networks in Social Media and News Media," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 11(2), pages 1-1, December.
    4. Bairong Wang & Jun Zhuang, 2018. "Rumor response, debunking response, and decision makings of misinformed Twitter users during disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1145-1162, September.
    5. Bruce Forrester, 2020. "Authentic chatter," Computational and Mathematical Organization Theory, Springer, vol. 26(4), pages 382-411, December.
    6. Greyling, Talita & Rossouw, Stephanie & Adhikari, Tamanna, 2020. "Happiness-lost: Did Governments make the right decisions to combat Covid-19?," GLO Discussion Paper Series 556, Global Labor Organization (GLO).
    7. Gaspar, Rui & Yan, Zheng & Domingos, Samuel, 2019. "Extreme natural and man-made events and human adaptive responses mediated by information and communication technologies' use: A systematic literature review," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 125-135.
    8. Alekh Gour & Shikha Aggarwal & Subodha Kumar, 2022. "Lending ears to unheard voices: An empirical analysis of user‐generated content on social media," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2457-2476, June.
    9. Jiayin Pei & Guang Yu & Xianyun Tian & Maureen Renee Donnelley, 2017. "A new method for early detection of mass concern about public health issues," Journal of Risk Research, Taylor & Francis Journals, vol. 20(4), pages 516-532, April.
    10. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    11. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    12. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    13. Xiaodong Yang & Lai Wei & Zhiyue Liu, 2022. "Promoting COVID-19 Vaccination Using the Health Belief Model: Does Information Acquisition from Divergent Sources Make a Difference?," IJERPH, MDPI, vol. 19(7), pages 1-15, March.
    14. Sarah Gardiner & Jinyan Chen & Margarida Abreu Novais & Karine Dupré & J. Guy Castley, 2023. "Analyzing and Leveraging Social Media Disaster Communication of Natural Hazards: Community Sentiment and Messaging Regarding the Australian 2019/20 Bushfires," Societies, MDPI, vol. 13(6), pages 1-20, May.
    15. Carlos Ruiz-Núñez & Ivan Herrera-Peco & Silvia María Campos-Soler & Álvaro Carmona-Pestaña & Elvira Benítez de Gracia & Juan José Peña Deudero & Andrés Ignacio García-Notario, 2023. "Sentiment Analysis on Twitter: Role of Healthcare Professionals in the Global Conversation during the AstraZeneca Vaccine Suspension," IJERPH, MDPI, vol. 20(3), pages 1-13, January.
    16. Valentina Lorenzoni & Gianni Andreozzi & Andrea Bazzani & Virginia Casigliani & Salvatore Pirri & Lara Tavoschi & Giuseppe Turchetti, 2022. "How Italy Tweeted about COVID-19: Detecting Reactions to the Pandemic from Social Media," IJERPH, MDPI, vol. 19(13), pages 1-14, June.
    17. Jiang, Meiling & Gao, Qingwu & Zhuang, Jun, 2021. "Reciprocal spreading and debunking processes of online misinformation: A new rumor spreading–debunking model with a case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    18. Cindy Cheng & Joan Barcelo & Allison Spencer Hartnett & Robert Kubinec & Luca Messerschmidt, 2020. "CoronaNet: A Dyadic Dataset of Government Responses to the COVID-19 Pandemic," Working Papers 20200042, New York University Abu Dhabi, Department of Social Science, revised Apr 2020.
    19. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sanchez-Alonso, Salvador, 2023. "The power of big data analytics over fake news: A scientometric review of Twitter as a predictive system in healthcare," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    20. Panagiotopoulos, Panos & Barnett, Julie & Bigdeli, Alinaghi Ziaee & Sams, Steven, 2016. "Social media in emergency management: Twitter as a tool for communicating risks to the public," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 86-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:3:d:10.1007_s11069-020-04497-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.