IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i6p2457-2476.html
   My bibliography  Save this article

Lending ears to unheard voices: An empirical analysis of user‐generated content on social media

Author

Listed:
  • Alekh Gour
  • Shikha Aggarwal
  • Subodha Kumar

Abstract

Governments and healthcare organizations increasingly pay attention to social media for handling a disease outbreak. The institutions and organizations need information support to gain insights into the situation and act accordingly. Currently, they primarily rely on ground‐level data, collecting which is a long and cumbersome process. Social media data present immense opportunities to use ground data quickly and effectively. Governments and HOs can use these data in launching rapid and speedy remedial actions. Social media data contain rich content in the form of people's reactions, calls‐for‐help, and feedback. However, in healthcare operations, the research on social media for providing information support is limited. Our study attempts to fill the gap mentioned above by investigating the relationship between the activity on social media and the quantum of the outbreak and further using content analytics to construct a model for segregating tweets. We use the case example of the COVID‐19 outbreak. The pandemic has advantages in contributing to the generalizability of results and facilitating the model's validation through data from multiple waves. The findings show that social media activity reflects the outbreak situation on the ground. In particular, we find that negative tweets posted by people during a crisis outbreak concur with the quantum of a disease outbreak. Further, we find a positive association between this relationship and increased information sharing through retweets. Building further on this insight, we propose a model using advanced analytical methods to reduce a large amount of unstructured data into four key categories—irrelevant posts, emotional outbursts, distress alarm, and relief measures. The supply‐side stakeholders (such as policy makers and humanitarian organizations) could use this information on time and optimize resources and relief packages in the right direction proactively.

Suggested Citation

  • Alekh Gour & Shikha Aggarwal & Subodha Kumar, 2022. "Lending ears to unheard voices: An empirical analysis of user‐generated content on social media," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2457-2476, June.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:6:p:2457-2476
    DOI: 10.1111/poms.13732
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13732
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu (Lucy) Yan & Alfonso J. Pedraza‐Martinez, 2019. "Social Media for Disaster Management: Operational Value of the Social Conversation," Production and Operations Management, Production and Operations Management Society, vol. 28(10), pages 2514-2532, October.
    2. Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
    3. Shirdastian, Hamid & Laroche, Michel & Richard, Marie-Odile, 2019. "Using big data analytics to study brand authenticity sentiments: The case of Starbucks on Twitter," International Journal of Information Management, Elsevier, vol. 48(C), pages 291-307.
    4. Mahyar Eftekhar & Hongmin Li & Luk N. Van Wassenhove & Scott Webster, 2017. "The Role of Media Exposure on Coordination in the Humanitarian Setting," Production and Operations Management, Production and Operations Management Society, vol. 26(5), pages 802-816, May.
    5. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    6. Qasim Bukhari & Joseph M. Massaro & Ralph B. D’Agostino & Sheraz Khan, 2020. "Effects of Weather on Coronavirus Pandemic," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
    7. Xu, Zhenning & Frankwick, Gary L. & Ramirez, Edward, 2016. "Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective," Journal of Business Research, Elsevier, vol. 69(5), pages 1562-1566.
    8. Sharad Goel & Ashton Anderson & Jake Hofman & Duncan J. Watts, 2016. "The Structural Virality of Online Diffusion," Management Science, INFORMS, vol. 62(1), pages 180-196, January.
    9. Naveen Kumar & Liangfei Qiu & Subodha Kumar, 2018. "Exit, Voice, and Response on Digital Platforms: An Empirical Investigation of Online Management Response Strategies," Information Systems Research, INFORMS, vol. 29(4), pages 849-870, December.
    10. Subodha Kumar & Vijay Mookerjee & Abhinav Shubham, 2018. "Research in Operations Management and Information Systems Interface," Production and Operations Management, Production and Operations Management Society, vol. 27(11), pages 1893-1905, November.
    11. Arturs Kalnins, 2018. "Multicollinearity: How common factors cause Type 1 errors in multivariate regression," Strategic Management Journal, Wiley Blackwell, vol. 39(8), pages 2362-2385, August.
    12. Samayita Guha & Subodha Kumar, 2018. "Emergence of Big Data Research in Operations Management, Information Systems, and Healthcare: Past Contributions and Future Roadmap," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1724-1735, September.
    13. Nezih Altay & Raktim Pal, 2014. "Information Diffusion among Agents: Implications for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 1015-1027, June.
    14. Kim, Kun & Park, Oun-joung & Yun, Seunghyun & Yun, Haejung, 2017. "What makes tourists feel negatively about tourism destinations? Application of hybrid text mining methodology to smart destination management," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 362-369.
    15. Altay, Nezih & Narayanan, Arunachalam, 2022. "Forecasting in humanitarian operations: Literature review and research needs," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1234-1244.
    16. Halunga, Andreea G. & Orme, Chris D. & Yamagata, Takashi, 2017. "A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 198(2), pages 209-230.
    17. Michael Rivera & Liangfei Qiu & Subodha Kumar & Tony Petrucci, 2021. "Are Traditional Performance Reviews Outdated? An Empirical Analysis on Continuous, Real-Time Feedback in the Workplace," Information Systems Research, INFORMS, vol. 32(2), pages 517-540, June.
    18. Wei Zhao & Qianqian Ben Liu & Xitong Guo & Tianshi Wu & Subodha Kumar, 2022. "Quid pro quo in online medical consultation? Investigating the effects of small monetary gifts from patients," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1698-1718, April.
    19. Jon M. Stauffer & Manoj Vanajakumari & Subodha Kumar & Theresa Mangapora, 2022. "Achieving equitable food security: How can food bank mobile pantries fill this humanitarian need," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1802-1821, April.
    20. Chae, Bongsug (Kevin), 2015. "Insights from hashtag #supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research," International Journal of Production Economics, Elsevier, vol. 165(C), pages 247-259.
    21. Bairong Wang & Jun Zhuang, 2017. "Crisis information distribution on Twitter: a content analysis of tweets during Hurricane Sandy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 161-181, October.
    22. Grover, Purva & Kar, Arpan Kumar & Davies, Gareth, 2018. "“Technology enabled Health” – Insights from twitter analytics with a socio-technical perspective," International Journal of Information Management, Elsevier, vol. 43(C), pages 85-97.
    23. Javier De la Hoz-M & Mª José Fernández-Gómez & Susana Mendes, 2021. "LDAShiny: An R Package for Exploratory Review of Scientific Literature Based on a Bayesian Probabilistic Model and Machine Learning Tools," Mathematics, MDPI, vol. 9(14), pages 1-21, July.
    24. Sonia Bhalotra, 2007. "Spending to save? State health expenditure and infant mortality in India," Health Economics, John Wiley & Sons, Ltd., vol. 16(9), pages 911-928, September.
    25. Tsan‐Ming Choi & Subodha Kumar & Xiaohang Yue & Hau‐Ling Chan, 2022. "Disruptive Technologies and Operations Management in the Industry 4.0 Era and Beyond," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 9-31, January.
    26. Eunae Yoo & Elliot Rabinovich & Bin Gu, 2020. "The Growth of Follower Networks on Social Media Platforms for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2696-2715, December.
    27. Hahn, Jinyong & Ham, John C. & Moon, Hyungsik Roger, 2011. "The Hausman test and weak instruments," Journal of Econometrics, Elsevier, vol. 160(2), pages 289-299, February.
    28. Singh, Akshit & Shukla, Nagesh & Mishra, Nishikant, 2018. "Social media data analytics to improve supply chain management in food industries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 398-415.
    29. David M. Drukker, 2003. "Testing for serial correlation in linear panel-data models," Stata Journal, StataCorp LP, vol. 3(2), pages 168-177, June.
    30. Christine Abdalla Mikhaeil & Richard Baskerville, 2019. "Using semiotics to analyze representational complexity in social media," Post-Print hal-02509212, HAL.
    31. Michael Barrett & Eivor Oborn & Wanda Orlikowski, 2016. "Creating Value in Online Communities: The Sociomaterial Configuring of Strategy, Platform, and Stakeholder Engagement," Information Systems Research, INFORMS, vol. 27(4), pages 704-723, December.
    32. Liangfei Qiu & Subodha Kumar, 2017. "Understanding Voluntary Knowledge Provision and Content Contribution Through a Social-Media-Based Prediction Market: A Field Experiment," Information Systems Research, INFORMS, vol. 28(3), pages 529-546, September.
    33. Harwin De Vries & Luk N. Van Wassenhove, 2020. "Do Optimization Models for Humanitarian Operations Need a Paradigm Shift?," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 55-61, January.
    34. Jayashankar M. Swaminathan, 2018. "Big Data Analytics for Rapid, Impactful, Sustained, and Efficient (RISE) Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1696-1700, September.
    35. Yu Xiao & Qunying Huang & Kai Wu, 2015. "Understanding social media data for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1663-1679, December.
    36. Yoon, Hyui Geon & Kim, Hyungjun & Kim, Chang Ouk & Song, Min, 2016. "Opinion polarity detection in Twitter data combining shrinkage regression and topic modeling," Journal of Informetrics, Elsevier, vol. 10(2), pages 634-644.
    37. Kovacs, Gyöngyi & Moshtari, Mohammad, 2019. "A roadmap for higher research quality in humanitarian operations: A methodological perspective," European Journal of Operational Research, Elsevier, vol. 276(2), pages 395-408.
    38. Marco T. Bastos & Dan Mercea & Arthur Charpentier, 2015. "Tents, Tweets, and Events: The Interplay Between Ongoing Protests and Social Media," Post-Print halshs-01241882, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schmidt, Christoph G. & Wuttke, David A. & Heese, H. Sebastian & Wagner, Stephan M., 2023. "Antecedents of public reactions to supply chain glitches," International Journal of Production Economics, Elsevier, vol. 259(C).
    2. Yi Feng & Yunqiang Yin & Dujuan Wang & Lalitha Dhamotharan & Joshua Ignatius & Ajay Kumar, 2023. "Diabetic patient review helpfulness: unpacking online drug treatment reviews by text analytics and design science approach," Annals of Operations Research, Springer, vol. 328(1), pages 387-418, September.
    3. Boyang Shi & Weixiang Huang & Yuanyuan Dang & Wenhui Zhou, 2024. "Leveraging social media data for pandemic detection and prediction," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eunae Yoo & Elliot Rabinovich & Bin Gu, 2020. "The Growth of Follower Networks on Social Media Platforms for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2696-2715, December.
    2. Bo Li & Subodha Kumar, 2022. "Managing Software‐as‐a‐Service: Pricing and operations," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2588-2608, June.
    3. Zhijun Yan & Lini Kuang & Liangfei Qiu, 2022. "Prosocial behaviors and economic performance: Evidence from an online mental healthcare platform," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3859-3876, October.
    4. Liangfei Qiu & Yili (Kevin) Hong & Andrew Whinston, 2022. "Special Issue of Production and Operations Management “Social Technologies in Operations”," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 868-869, February.
    5. Jónas Oddur Jónasson & Kamalini Ramdas & Alp Sungu, 2022. "Social impact operations at the global base of the pyramid," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4364-4378, December.
    6. Choi, Tsan-Ming & Guo, Shu & Luo, Suyuan, 2020. "When blockchain meets social-media: Will the result benefit social media analytics for supply chain operations management?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    7. Charles J. Corbett & Alfonso J. Pedraza‐Martinez & Luk N. Van Wassenhove, 2022. "Sustainable humanitarian operations: An integrated perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4393-4406, December.
    8. Lu (Lucy) Yan, 2020. "The Kindness of Commenters: An Empirical Study of the Effectiveness of Perceived and Received Support for Weight‐Loss Outcomes," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1448-1466, June.
    9. Sushil Gupta & Medha Tekriwal & Carlos M. Parra, 2022. "Permeation of the term “analytics” in production and operations management research," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3651-3667, October.
    10. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    11. Maximilian Klöckner & Christoph G. Schmidt & Stephan M. Wagner, 2022. "When Blockchain Creates Shareholder Value: Empirical Evidence from International Firm Announcements," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 46-64, January.
    12. Suyuan Luo & Tsan‐Ming Choi, 2022. "E‐commerce supply chains with considerations of cyber‐security: Should governments play a role?," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2107-2126, May.
    13. Qili Wang & Liangfei Qiu & Wei Xu, 2024. "Informal Payments and Doctor Engagement in an Online Health Community: An Empirical Investigation Using Generalized Synthetic Control," Information Systems Research, INFORMS, vol. 35(2), pages 706-726, June.
    14. Fan, Yu & Shao, Jianfang & Wang, Xihui & Liang, Liang, 2024. "Contract design between relief organisations and private-sector vendors: A humanitarian logistics framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    15. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    16. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    17. Christian Wankmüller & Gerald Reiner, 2021. "Identifying Challenges and Improvement Approaches for More Efficient Procurement Coordination in Relief Supply Chains," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    18. Jyoti Prakash Singh & Yogesh K. Dwivedi & Nripendra P. Rana & Abhinav Kumar & Kawaljeet Kaur Kapoor, 2019. "Event classification and location prediction from tweets during disasters," Annals of Operations Research, Springer, vol. 283(1), pages 737-757, December.
    19. Moshtari, Mohammad & Altay, Nezih & Heikkilä, Jussi & Gonçalves, Paulo, 2021. "Procurement in humanitarian organizations: Body of knowledge and practitioner's challenges," International Journal of Production Economics, Elsevier, vol. 233(C).
    20. ManMohan S. Sodhi & Zahra Seyedghorban & Hossein Tahernejad & Danny Samson, 2022. "Why emerging supply chain technologies initially disappoint: Blockchain, IoT, and AI," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2517-2537, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:6:p:2457-2476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.