IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i1d10.1007_s11069-021-04615-x.html
   My bibliography  Save this article

Evaluating rural Pacific Northwest towns for wildfire evacuation vulnerability

Author

Listed:
  • Alex W. Dye

    (Oregon State University)

  • John B. Kim

    (USDA Forest Service Pacific Northwest Research Station)

  • Andrew McEvoy

    (ORISE Fellow)

  • Fang Fang

    (University of Illinois at Urbana-Champaign)

  • Karin L. Riley

    (Missoula Fire Sciences Lab)

Abstract

Wildfire is an annual threat for many rural communities in the Pacific Northwest region of the United States. In some severe events, evacuation is one potential course of action to gain safety from an advancing wildfire. Since most evacuations occur in a personal vehicle along the surrounding road network, the quality of this network is a critical component of a community's vulnerability to wildfire. In this paper, we leverage a high-resolution spatial dataset of wildfire burn probability and mean fireline intensity to conduct a regional-scale screening of wildfire evacuation vulnerability for 696 Oregon and Washington rural towns. We characterize each town’s surrounding road network to construct four simple road metrics related to the potential to quickly and safely evacuate: (1) the number of paved lanes leaving town that intersect a fixed-distance circular buffer; (2) the variety of lane directions available for egress; (3) the travel area that can be reached within a minimum distance while constrained only to movement along the paved road network; and (4) the sum of connected lanes at each intersection for the road network within a fixed-distance circular buffer. We then combine the road metrics with two metrics characterizing fire hazard of the surrounding landscape through which evacuation will occur: (1) burn probability and (2) mean fireline intensity. By combining the road and fire metrics, we create a composite score for ranking all towns by their overall evacuation vulnerability. The most vulnerable towns are those where poor road networks overlap with high fire hazard. Often, these towns are located in remote, forested, mountainous terrain, where topographic relief constrains the available road network and high fuel loads increase wildfire hazard. An interactive map of all road quality and fire hazard metrics is available at https://www.fs.fed.us/wwetac/brief/evacuation.php .

Suggested Citation

  • Alex W. Dye & John B. Kim & Andrew McEvoy & Fang Fang & Karin L. Riley, 2021. "Evaluating rural Pacific Northwest towns for wildfire evacuation vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 911-935, May.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04615-x
    DOI: 10.1007/s11069-021-04615-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04615-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04615-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Max A. Moritz & Enric Batllori & Ross A. Bradstock & A. Malcolm Gill & John Handmer & Paul F. Hessburg & Justin Leonard & Sarah McCaffrey & Dennis C. Odion & Tania Schoennagel & Alexandra D. Syphard, 2014. "Learning to coexist with wildfire," Nature, Nature, vol. 515(7525), pages 58-66, November.
    2. Alan A. Ager & Jeffrey D. Kline & A. Paige Fischer, 2015. "Coupling the Biophysical and Social Dimensions of Wildfire Risk to Improve Wildfire Mitigation Planning," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1393-1406, August.
    3. Joe Scott & Don Helmbrecht & Matthew Thompson & David Calkin & Kate Marcille, 2012. "Probabilistic assessment of wildfire hazard and municipal watershed exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 707-728, October.
    4. Amirhassan Kermanshah & Sybil Derrible, 2017. "Robustness of road systems to extreme flooding: using elements of GIS, travel demand, and network science," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 151-164, March.
    5. Toddi Steelman & Sarah McCaffrey & Anne-Lise Velez & Jason Briefel, 2015. "What information do people use, trust, and find useful during a disaster? Evidence from five large wildfires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 615-634, March.
    6. Thomas J. Cova & Philip E. Dennison & Frank A. Drews, 2011. "Modeling Evacuate versus Shelter-in-Place Decisions in Wildfires," Sustainability, MDPI, vol. 3(10), pages 1-26, September.
    7. Philip E. Dennison & Thomas J. Cova & Max A. Mortiz, 2007. "WUIVAC: a wildland-urban interface evacuation trigger model applied in strategic wildfire scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 181-199, April.
    8. Hsueh-Sheng Chang & Chin-Hsien Liao, 2015. "Planning emergency shelter locations based on evacuation behavior," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1551-1571, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer L. Beverly & Air M. Forbes, 2023. "Assessing directional vulnerability to wildfire," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 831-849, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alcasena, Fermín J. & Salis, Michele & Nauslar, Nicholas J. & Aguinaga, A. Eduardo & Vega-García, Cristina, 2016. "Quantifying economic losses from wildfires in black pine afforestations of northern Spain," Forest Policy and Economics, Elsevier, vol. 73(C), pages 153-167.
    2. Alan A. Ager & Palaiologos Palaiologou & Cody R. Evers & Michelle A. Day & Ana M. G. Barros, 2018. "Assessing Transboundary Wildfire Exposure in the Southwestern United States," Risk Analysis, John Wiley & Sons, vol. 38(10), pages 2105-2127, October.
    3. Górriz-Mifsud, Elena & Burns, Matthew & Marini Govigli, Valentino, 2019. "Civil society engaged in wildfires: Mediterranean forest fire volunteer groupings," Forest Policy and Economics, Elsevier, vol. 102(C), pages 119-129.
    4. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    5. Antony S. Cheng & Lisa Dale, 2020. "Achieving Adaptive Governance of Forest Wildfire Risk Using Competitive Grants: Insights From the Colorado Wildfire Risk Reduction Grant Program," Review of Policy Research, Policy Studies Organization, vol. 37(5), pages 657-686, September.
    6. Ji Yun Lee & Fangjiao Ma & Yue Li, 2022. "Understanding homeowner proactive actions for managing wildfire risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1525-1547, November.
    7. Margherita Carlucci & Ilaria Zambon & Andrea Colantoni & Luca Salvati, 2019. "Socioeconomic Development, Demographic Dynamics and Forest Fires in Italy, 1961–2017: A Time-Series Analysis," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    8. Wong, Stephen D PhD & Broader, Jacquelyn C & Walker, Joan L PhD & Shaheen, Susan A PhD, 2022. "Understanding California wildfire evacuee behavior and joint choice making," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4fm7d34j, Institute of Transportation Studies, UC Berkeley.
    9. Hazra, Devika & Gallagher, Patricia, 2022. "Role of insurance in wildfire risk mitigation," Economic Modelling, Elsevier, vol. 108(C).
    10. Tolulope O. Odimayomi & Caitlin R. Proctor & Qi Erica Wang & Arman Sabbaghi & Kimberly S. Peterson & David J. Yu & Juneseok Lee & Amisha D. Shah & Christian J. Ley & Yoorae Noh & Charlotte D. Smith & , 2021. "Water safety attitudes, risk perception, experiences, and education for households impacted by the 2018 Camp Fire, California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 947-975, August.
    11. E. Ronchi & J. Wahlqvist & A. Ardinge & A. Rohaert & S. M. V. Gwynne & G. Rein & H. Mitchell & N. Kalogeropoulos & M. Kinateder & N. Bénichou & E. Kuligowski & A. Kimball, 2023. "The verification of wildland–urban interface fire evacuation models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1493-1519, June.
    12. Emily Heaney & Laura Hunter & Angus Clulow & Devin Bowles & Sotiris Vardoulakis, 2021. "Efficacy of Communication Techniques and Health Outcomes of Bushfire Smoke Exposure: A Scoping Review," IJERPH, MDPI, vol. 18(20), pages 1-14, October.
    13. Joe Scott & Don Helmbrecht & Matthew Thompson & David Calkin & Kate Marcille, 2012. "Probabilistic assessment of wildfire hazard and municipal watershed exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 707-728, October.
    14. Galiana-Martín Luis, 2017. "Spatial Planning Experiences for Vulnerability Reduction in the Wildland-Urban Interface in Mediterranean European Countries," European Countryside, Sciendo, vol. 9(3), pages 577-593, September.
    15. Xu Chen & Surya T. Tokdar, 2021. "Joint quantile regression for spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 826-852, September.
    16. Yijun Shi & Guofang Zhai & Lihua Xu & Quan Zhu & Jinyang Deng, 2019. "Planning Emergency Shelters for Urban Disasters: A Multi-Level Location–Allocation Modeling Approach," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    17. Thompson, Matthew P. & Haas, Jessica R. & Finney, Mark A. & Calkin, David E. & Hand, Michael S. & Browne, Mark J. & Halek, Martin & Short, Karen C. & Grenfell, Isaac C., 2015. "Development and application of a probabilistic method for wildfire suppression cost modeling," Forest Policy and Economics, Elsevier, vol. 50(C), pages 249-258.
    18. Feliu Serra-Burriel & Pedro Delicado & Fernando M. Cucchietti, 2021. "Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
    19. Reza Asriandi Ekaputra & Changkye Lee & Seong-Hoon Kee & Jurng-Jae Yee, 2022. "Emergency Shelter Geospatial Location Optimization for Flood Disaster Condition: A Review," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    20. Mohsen Alawi & Dongzhu Chu & Seba Hammad, 2023. "Resilience of Public Open Spaces to Earthquakes: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 15(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04615-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.