IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i1d10.1007_s11069-021-04594-z.html
   My bibliography  Save this article

The adoption of ELM to the prediction of soil liquefaction based on CPT

Author

Listed:
  • Yong-gang Zhang

    (Tongji University)

  • Junbo Qiu

    (University of Science and Technology Liaoning)

  • Yan Zhang

    (Hohai University)

  • Yongyao Wei

    (Geological Survey of Jiangsu Province)

Abstract

Establishing a soil liquefaction prediction model with high accuracy is a critical way to evaluate the quality of in situ and prevent the loss caused by seismic. In this paper, considering the advantage of cone penetration test (CPT) over standard penetration test (SPT) and the suitability for dealing with the nonlinear problems of the extreme learning machine (ELM), the ELM was tried to train the prediction model. Firstly, seven prediction parameters were analyzed and determined; then 226 CPT samples were divided into the training set and test set; then the parameter of ELM model was assured by comparing the training accuracy and speed of model when setting the number of the neuron of the hidden layer from 5 to 16 and the activation function as $${\text{sig}}$$ sig , $${\text{sin}}$$ sin , $${\text{hardlim}}$$ hardlim . Finally, the performance of the established ELM model was tested through the test set. The results showed the accuracy of using function $${\text{sin}}$$ sin was 81.43% and 87.50% for the training set and test set, respectively; at the same time, the operation was 1.5055 s which was not much different from other two functions. The prediction model based on CPT perform better than that of SPT and can obtain a highly accurate prediction of 100% for the liquefied case and overall accuracy of 87.5%. ELM was proved to be feasible to be used and developed into the in situ evaluation.

Suggested Citation

  • Yong-gang Zhang & Junbo Qiu & Yan Zhang & Yongyao Wei, 2021. "The adoption of ELM to the prediction of soil liquefaction based on CPT," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 539-549, May.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04594-z
    DOI: 10.1007/s11069-021-04594-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04594-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04594-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarat Kumar Das & Ranajeet Mohanty & Madhumita Mohanty & Mahasakti Mahamaya, 2020. "Multi-objective feature selection (MOFS) algorithms for prediction of liquefaction susceptibility of soil based on in situ test methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2371-2393, September.
    2. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    3. Safa, Maryam & Sari, Puteri Azura & Shariati, Mahdi & Suhatril, Meldi & Trung, Nguyen Thoi & Wakil, Karzan & Khorami, Majid, 2020. "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. V. Kohestani & M. Hassanlourad & A. Ardakani, 2015. "Evaluation of liquefaction potential based on CPT data using random forest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1079-1089, November.
    5. Xinhua Xue & Xingguo Yang, 2013. "Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 901-917, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong-gang Zhang & Xin-quan Chen & Rao-ping Liao & Jun-li Wan & Zheng-ying He & Zi-xin Zhao & Yan Zhang & Zheng-yang Su, 2021. "Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1709-1729, June.
    2. Junlin Wang & Zhao Li, 2021. "Experimental Study of Thermal Response of Vertically Loaded Energy Pipe Pile," Sustainability, MDPI, vol. 13(13), pages 1-12, July.
    3. Abdullah Hulusi Kökçam & Caner Erden & Alparslan Serhat Demir & Talas Fikret Kurnaz, 2024. "Bibliometric analysis of artificial intelligence techniques for predicting soil liquefaction: insights and MCDM evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11153-11181, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binh Thai Pham & Chongchong Qi & Lanh Si Ho & Trung Nguyen-Thoi & Nadhir Al-Ansari & Manh Duc Nguyen & Huu Duy Nguyen & Hai-Bang Ly & Hiep Van Le & Indra Prakash, 2020. "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    2. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    3. Vujović, Vuk & Denić, Nebojša & Stevanović, Vesna & Stevanović, Mališa & Stojanović, Jelena & Cao, Yan & Alhammadi, Yasir & Jermsittiparsert, Kittisak & Van Le, Hiep & Wakil, Karzan & Radojkovic, Ivan, 2020. "Project planning and risk management as a success factor for IT projects in agricultural schools in Serbia," Technology in Society, Elsevier, vol. 63(C).
    4. Milovancevic, Milos & Zandi, Yousef & Rahimi, Abouzar & Denić, Nebojša & Vujović, Vuk & Zlatković, Dragan & Ilic, Ivana D. & Stojanović, Jelena & Gavrilović, Snežana & Khadimallah, Mohamed Amine & Iva, 2022. "Engine performance fueled with jojoba biodiesel and enzymatic saccharification on the yield of glucose of microbial lipids biodiesel," Energy, Elsevier, vol. 239(PD).
    5. Lai, Wenzhe & Zhen, Zhao & Wang, Fei & Fu, Wenjie & Wang, Junlong & Zhang, Xudong & Ren, Hui, 2024. "Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations," Energy, Elsevier, vol. 288(C).
    6. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    7. Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
    8. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Leijiao Ge & Tianshuo Du & Changlu Li & Yuanliang Li & Jun Yan & Muhammad Umer Rafiq, 2022. "Virtual Collection for Distributed Photovoltaic Data: Challenges, Methodologies, and Applications," Energies, MDPI, vol. 15(23), pages 1-24, November.
    10. Wu, Thomas & Hu, Ruifeng & Zhu, Hongyu & Jiang, Meihui & Lv, Kunye & Dong, Yunxuan & Zhang, Dongdong, 2024. "Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition," Energy, Elsevier, vol. 288(C).
    11. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    12. Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
    13. Muhammad Ali & Naseer Muhammad Khan & Qiangqiang Gao & Kewang Cao & Danial Jahed Armaghani & Saad S. Alarifi & Hafeezur Rehman & Izhar Mithal Jiskani, 2023. "Prediction of Coal Dilatancy Point Using Acoustic Emission Characteristics: Insight Experimental and Artificial Intelligence Approaches," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    14. Chongchong Qi & Andy Fourie & Xuhao Du & Xiaolin Tang, 2018. "Prediction of open stope hangingwall stability using random forests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1179-1197, June.
    15. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
    16. V. Kohestani & M. Hassanlourad & A. Ardakani, 2015. "Evaluation of liquefaction potential based on CPT data using random forest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1079-1089, November.
    17. He, Zhichao & Huang, Jianhua, 2023. "A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction," Resources Policy, Elsevier, vol. 86(PB).
    18. Wentao Ma & Lihong Qiu & Fengyuan Sun & Sherif S. M. Ghoneim & Jiandong Duan, 2022. "PV Power Forecasting Based on Relevance Vector Machine with Sparrow Search Algorithm Considering Seasonal Distribution and Weather Type," Energies, MDPI, vol. 15(14), pages 1-24, July.
    19. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    20. Amini Toosi, Hashem & Del Pero, Claudio & Leonforte, Fabrizio & Lavagna, Monica & Aste, Niccolò, 2023. "Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization," Applied Energy, Elsevier, vol. 334(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04594-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.