IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-024-06630-0.html
   My bibliography  Save this article

Bibliometric analysis of artificial intelligence techniques for predicting soil liquefaction: insights and MCDM evaluation

Author

Listed:
  • Abdullah Hulusi Kökçam

    (Sakarya University)

  • Caner Erden

    (Sakarya University of Applied Sciences
    Sakarya University of Applied Sciences)

  • Alparslan Serhat Demir

    (Sakarya University)

  • Talas Fikret Kurnaz

    (Technical Sciences Vocational School, Mersin University)

Abstract

The geotechnical phenomenon of soil liquefaction has serious implications for infrastructure and human safety, making it crucial to develop effective prediction and mitigation strategies as urbanization and infrastructure development expand. Recently, there has been significant interest in the potential of artificial intelligence (AI) techniques to address complex geotechnical issues, such as soil liquefaction. This study provides a bibliometric analysis of research literature on AI applications in predicting soil liquefaction. By systematically searching the Web of Science database, we identified 258 relevant articles published between 1994 and 2023 and applied bibliometric indicators to analyze publication trends, authorship patterns, affiliated institutions, publication venues, and citation patterns. This study presents a novel approach to evaluating the results obtained from bibliometric analysis. The MULTIMOORA method, a Multi-Criteria Decision Making (MCDM) technique, was employed to analyze further the journals that contributed to creating an academic knowledge inventory regarding AI techniques in soil liquefaction. This study demonstrates the utility of MCDM techniques as aggregators of bibliometric analysis results and their ability to facilitate decision-making. The interdisciplinary nature of this field, combining geotechnical engineering, computer science, and machine learning, is highlighted. The study also reveals a steady rise in publications on AI in liquefaction, with a notable increase in 2011 and 2019. The Soil Dynamics and Earthquake Engineering journal is shown to be particularly significant in studies on soil liquefaction prediction with AI techniques, followed by the Bulletin of Engineering Geology and the Environment and Environmental Earth Sciences journals.

Suggested Citation

  • Abdullah Hulusi Kökçam & Caner Erden & Alparslan Serhat Demir & Talas Fikret Kurnaz, 2024. "Bibliometric analysis of artificial intelligence techniques for predicting soil liquefaction: insights and MCDM evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11153-11181, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06630-0
    DOI: 10.1007/s11069-024-06630-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06630-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06630-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    2. Hsin-Ning Su & Pei-Chun Lee, 2010. "Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in Technology Foresight," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 65-79, October.
    3. Yong-gang Zhang & Junbo Qiu & Yan Zhang & Yongyao Wei, 2021. "The adoption of ELM to the prediction of soil liquefaction based on CPT," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 539-549, May.
    4. Xinhua Xue & Xingguo Yang, 2013. "Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 901-917, June.
    5. Sufyan Ghani & Sunita Kumari, 2022. "Liquefaction behavior of Indo-Gangetic region using novel metaheuristic optimization algorithms coupled with artificial neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2995-3029, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Korzeniowska Dominika & Brescia Valerio & Fijałkowska Justyna, 2022. "Behavioral Accounting: A Bibliometric Analysis of Literature Outputs in 2013–2022," Journal of Intercultural Management, Sciendo, vol. 14(3), pages 17-40, September.
    2. Leng Liu & Congjie Cao & Wei Song, 2023. "Bibliometric Analysis in the Field of Rural Revitalization: Current Status, Progress, and Prospects," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    3. Hao Yu & Wei Song, 2023. "Research Progress on the Impact of Land Use Change on Soil Carbon Sequestration," Land, MDPI, vol. 12(1), pages 1-18, January.
    4. Yong Qin & Zeshui Xu & Xinxin Wang & Marinko Skare, 2024. "Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 1736-1770, March.
    5. Eduardsen, Jonas & Marinova, Svetla, 2020. "Internationalisation and risk: Literature review, integrative framework and research agenda," International Business Review, Elsevier, vol. 29(3).
    6. Alexandre Oliveira & Fernando Carvalho & Nuno Rosa Reis, 2022. "Institutions and Firms’ Performance: A Bibliometric Analysis and Future Research Avenues," Publications, MDPI, vol. 10(1), pages 1-20, February.
    7. Radosław Malik & Anna Visvizi & Orlando Troisi & Mara Grimaldi, 2022. "Smart Services in Smart Cities: Insights from Science Mapping Analysis," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    8. Thiago Victorino & Carlos Rosano Peña, 2023. "The Development of Efficiency Analysis in Transportation Systems: A Bibliometric and Systematic Review," Sustainability, MDPI, vol. 15(13), pages 1-32, June.
    9. Manuele Bettoni & Michael Maerker & Alberto Bosino & Calogero Schillaci & Sebastian Vogel, 2022. "Bibliometric Analysis of Soil and Landscape Stability, Sensitivity and Resistivity," Land, MDPI, vol. 11(8), pages 1-27, August.
    10. Jian Xu & Yi Bu & Ying Ding & Sinan Yang & Hongli Zhang & Chen Yu & Lin Sun, 2018. "Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 973-995, November.
    11. Merve Anaç & Gulden Gumusburun Ayalp & Kamil Erdayandi, 2023. "Prefabricated Construction Risks: A Holistic Exploration through Advanced Bibliometric Tool and Content Analysis," Sustainability, MDPI, vol. 15(15), pages 1-31, August.
    12. Quan-Hoang Vuong & Huyen Thanh T. Nguyen & Thanh-Hang Pham & Manh-Toan Ho & Minh-Hoang Nguyen, 2021. "Assessing the ideological homogeneity in entrepreneurial finance research by highly cited publications," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    13. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    14. Maksym Obrizan, 2018. "Economists in Ukraine: who are they and where do they publish?," Working Papers 3181, Research Consulting and Development.
    15. Hongxia Jin & Lu Lu & Haojun Fan, 2022. "Global Trends and Research Hotspots in Long COVID: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    16. Zoltán Lakner & Brigitta Plasek & Gyula Kasza & Anna Kiss & Sándor Soós & Ágoston Temesi, 2021. "Towards Understanding the Food Consumer Behavior–Food Safety–Sustainability Triangle: A Bibliometric Approach," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    17. Ying Liang & Wei Song, 2022. "Ecological and Environmental Effects of Land Use and Cover Changes on the Qinghai-Tibetan Plateau: A Bibliometric Review," Land, MDPI, vol. 11(12), pages 1-23, November.
    18. Lanzalonga Federico & Chmet Federico & Petrolo Basilio & Brescia Valerio, 2023. "Exploring Diversity Management to Avoid Social Washing and Pinkwashing: Using Bibliometric Analysis to Shape Future Research Directions," Journal of Intercultural Management, Sciendo, vol. 15(1), pages 41-65, March.
    19. Jussi T. S. Heikkila, 2020. "Classifying economics for the common good: Connecting sustainable development goals to JEL codes," Papers 2004.04384, arXiv.org.
    20. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06630-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.