Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-013-0615-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- V. Kohestani & M. Hassanlourad & A. Ardakani, 2015. "Evaluation of liquefaction potential based on CPT data using random forest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1079-1089, November.
- Yong-gang Zhang & Junbo Qiu & Yan Zhang & Yongyao Wei, 2021. "The adoption of ELM to the prediction of soil liquefaction based on CPT," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 539-549, May.
- Xiwen Zhang & Xiaowei Tang & Ryosuke Uzuoka, 2015. "Numerical simulation of 3D liquefaction disasters using an automatic time stepping method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1275-1287, June.
- Xuesong Zhang & Biao He & Mohanad Muayad Sabri Sabri & Mohammed Al-Bahrani & Dmitrii Vladimirovich Ulrikh, 2022. "Soil Liquefaction Prediction Based on Bayesian Optimization and Support Vector Machines," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
- Xinhua Xue & Xingguo Yang, 2014. "Seismic liquefaction potential assessed by fuzzy comprehensive evaluation method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2101-2112, April.
More about this item
Keywords
Earthquake; Soil liquefaction; Adaptive neuro-fuzzy method; Cone penetration test;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:67:y:2013:i:2:p:901-917. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.