IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i3d10.1007_s11069-020-04420-y.html
   My bibliography  Save this article

Extreme storm surges and waves and vulnerability of coastal bridges in New York City metropolitan region: an assessment based on Hurricane Sandy

Author

Listed:
  • K. Qu

    (Changsha University of Science and Technology
    CUNY)

  • W. Yao

    (Boston Consulting Group)

  • H. S. Tang

    (CUNY)

  • A. Agrawal

    (CUNY)

  • G. Shields

    (CUNY)

  • S. I. Chien

    (New Jersey Institute of Technology)

  • S. Gurung

    (CUNY)

  • Y. Imam

    (North Cross School)

  • I. Chiodi

    (Friends Seminary)

Abstract

Hurricane Sandy struck the New York metropolitan area in October 2012, becoming the second-costliest cyclone in the nation since 1900, and it serves as a valuable basis for investigating future extreme hurricane events in the area. This paper presents a hindcast study of storm surges and waves along the coast of the Mid-Atlantic Bight region during Hurricane Sandy using the FVCOM-SWAVE system, and its simulation results match observed data at a number of stations along the coastline. Then, as potential future scenarios, surges and waves in this region are predicted in synthetic hurricanes based on Hurricane Sandy’s parameters in association with sea-level rise in 50 and 100 years as well as with eight paths perturbed from that of Sandy. The prediction indicates that such surges and waves exhibit complex behaviors, and they can be much stronger than those during Hurricane Sandy. Finally, an assessment of hydraulic vulnerability is made for all coastal bridges in the New Jersey and New York region. It shows that hydrodynamic load and scour depth at some bridges may be worse in certain scenarios than those during Superstorm Sandy, while the probability of structural failure is small for the majority of them.

Suggested Citation

  • K. Qu & W. Yao & H. S. Tang & A. Agrawal & G. Shields & S. I. Chien & S. Gurung & Y. Imam & I. Chiodi, 2021. "Extreme storm surges and waves and vulnerability of coastal bridges in New York City metropolitan region: an assessment based on Hurricane Sandy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2697-2734, February.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04420-y
    DOI: 10.1007/s11069-020-04420-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04420-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04420-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam Hatzikyriakou & Ning Lin, 2017. "Simulating storm surge waves for structural vulnerability estimation and flood hazard mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 939-962, November.
    2. Komali Kantamaneni, 2016. "Coastal infrastructure vulnerability: an integrated assessment model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 139-154, October.
    3. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmela Mariano & Marsia Marino & Giovanna Pisacane & Gianmaria Sannino, 2021. "Sea Level Rise and Coastal Impacts: Innovation and Improvement of the Local Urban Plan for a Climate-Proof Adaptation Strategy," Sustainability, MDPI, vol. 13(3), pages 1-21, February.
    2. Dapeng Zhang & Yunsheng Ma & Huiling Zhang & Yi Zhang, 2024. "Marine Equipment Siting Using Machine-Learning-Based Ocean Remote Sensing Data: Current Status and Future Prospects," Sustainability, MDPI, vol. 16(20), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng-Tao Zhu & Feng Cai & Shen-Liang Chen & Dong-Qi Gu & Ai-Ping Feng & Chao Cao & Hong-Shuai Qi & Gang Lei, 2018. "Coastal Vulnerability to Erosion Using a Multi-Criteria Index: A Case Study of the Xiamen Coast," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    2. Meixler, Marcia S. & Kaunzinger, Christina M.K. & Epiphan, Jean N. & Handel, Steven N., 2020. "Identifying opportunities for local assisted expansion of coastal upland vegetation in an urban estuary," Ecological Modelling, Elsevier, vol. 438(C).
    3. Azazkhan Pathan & Komali Kantamaneni & Prasit Agnihotri & Dhruvesh Patel & Saif Said & Sudhir Kumar Singh, 2022. "Integrated Flood Risk Management Approach Using Mesh Grid Stability and Hydrodynamic Model," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    4. Fangxin Yi & Yong Tu, 2018. "An Evaluation of the Paired Assistance to Disaster-Affected Areas Program in Disaster Recovery: The Case of the Wenchuan Earthquake," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    5. Md Golam Rabbani Fahad & Rouzbeh Nazari & M. H. Motamedi & Maryam E. Karimi, 2020. "Coupled Hydrodynamic and Geospatial Model for Assessing Resiliency of Coastal Structures under Extreme Storm Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1123-1138, February.
    6. Md. Mahfuzul Islam & A. Aldrie Amir & Rawshan Ara Begum, 2021. "Community awareness towards coastal hazard and adaptation strategies in Pahang coast of Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1593-1620, June.
    7. Fahad, Md Golam Rabbani & Nazari, Rouzbeh & Motamedi, M.H. & Karimi, Maryam, 2022. "A Decision-Making Framework Integrating Fluid and Solid Systems to Assess Resilience of Coastal Communities Experiencing Extreme Storm Events," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Aaron Opdyke & Desmond Chiang & Anthony Tsang & Jacob Smyth, 2022. "Benchmarking household storm surge risk perceptions to scientific models in the Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1285-1305, November.
    9. Young Seok Song & Moo Jong Park, 2018. "A Study on Estimation Equation for Damage and Recovery Costs Considering Human Losses Focused on Natural Disasters in the Republic of Korea," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    10. Jon Rosales & Carol Cady & Glenn Juday & Claire Alix & Miho Morimoto & Jessica Chapman & Dakota Casserly & Sophia Katchatag, 2021. "Storm surge proxies in a data-poor landscape: a practical monitoring method for under-surveyed and -studied communities vulnerable to climate change," Climatic Change, Springer, vol. 164(1), pages 1-17, January.
    11. Sufia Rehman & Mehebub Sahana & Haoyuan Hong & Haroon Sajjad & Baharin Bin Ahmed, 2019. "A systematic review on approaches and methods used for flood vulnerability assessment: framework for future research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 975-998, March.
    12. Namir Domingos Raimundo Lopes & Tianxin Li & Nametso Matomela & Rui Moutinho Sá, 2022. "Coastal vulnerability assessment based on multi-hazards and bio-geophysical parameters. case study - northwestern coastline of Guinea-Bissau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 989-1013, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04420-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.