IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p93-d192938.html
   My bibliography  Save this article

Coastal Vulnerability to Erosion Using a Multi-Criteria Index: A Case Study of the Xiamen Coast

Author

Listed:
  • Zheng-Tao Zhu

    (State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
    First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China)

  • Feng Cai

    (Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China)

  • Shen-Liang Chen

    (State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China)

  • Dong-Qi Gu

    (First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China)

  • Ai-Ping Feng

    (Island Research Center, State Oceanic Administration, Pingtan 350400, China)

  • Chao Cao

    (Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China)

  • Hong-Shuai Qi

    (Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China)

  • Gang Lei

    (Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China)

Abstract

The assessment of coastal vulnerability to erosion is urgently needed due to increasing coastal erosion globally. Based on the coastal characteristics of the Xiamen artificial coastline, which accounts for more than 80% of the coastline in this area, this study provides an integrated approach based on a multi-criteria index. The evaluation index system of the local coastal vulnerability to the erosion of Xiamen includes 12 indexes based on natural (coastal characteristics, coastal forcing), and socio-economic factors (coastal infrastructure, disaster reduction). The spatial differentiation characteristics of the coastal vulnerability to erosion along the Xiamen coast (2018) have been quantitatively assessed with the aid of GIS (Geographic Information System) and RS (Remote Sensing) technology. The results show that the very high vulnerability, high vulnerability, medium vulnerability, low vulnerability and very low vulnerability areas of coastal erosion accounted for 4.6%, 30.5%, 51.6%, 12.5% and 0.8% of the Xiamen coast, respectively. The coastal vulnerability to erosion classes of artificial coasts is significantly higher than those of natural coasts. This difference is mainly controlled by the coastal slope and coastal buffer ability. The results of the evaluation are basically consistent with the present situation. The rationality of the index system and the applicability of the theoretical method are well explained. The evaluation model constructed in this study can be extended to other areas with high ratios of artificial coasts.

Suggested Citation

  • Zheng-Tao Zhu & Feng Cai & Shen-Liang Chen & Dong-Qi Gu & Ai-Ping Feng & Chao Cao & Hong-Shuai Qi & Gang Lei, 2018. "Coastal Vulnerability to Erosion Using a Multi-Criteria Index: A Case Study of the Xiamen Coast," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:93-:d:192938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/93/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/93/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katie K. Arkema & Greg Guannel & Gregory Verutes & Spencer A. Wood & Anne Guerry & Mary Ruckelshaus & Peter Kareiva & Martin Lacayo & Jessica M. Silver, 2013. "Coastal habitats shield people and property from sea-level rise and storms," Nature Climate Change, Nature, vol. 3(10), pages 913-918, October.
    2. James M. Fitton & Jim D. Hansom & Alistair F. Rennie, 2018. "A method for modelling coastal erosion risk: the example of Scotland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 931-961, April.
    3. Burak Güneralp & İnci Güneralp & Cesar R. Castillo & Anthony M. Filippi, 2013. "Land Change in the Mission-Aransas Coastal Region, Texas: Implications for Coastal Vulnerability and Protected Areas," Sustainability, MDPI, vol. 5(10), pages 1-21, September.
    4. Jochen Hinkel & Robert Nicholls & Athanasios Vafeidis & Richard Tol & Thaleia Avagianou, 2010. "Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 703-719, October.
    5. Saaty, Thomas L., 2006. "Rank from comparisons and from ratings in the analytic hierarchy/network processes," European Journal of Operational Research, Elsevier, vol. 168(2), pages 557-570, January.
    6. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    7. P. Sheik Mujabar & N. Chandrasekar, 2013. "Coastal erosion hazard and vulnerability assessment for southern coastal Tamil Nadu of India by using remote sensing and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1295-1314, December.
    8. Diana Di Luccio & Guido Benassai & Gianluigi Di Paola & Carmen Maria Rosskopf & Luigi Mucerino & Raffaele Montella & Pasquale Contestabile, 2018. "Monitoring and Modelling Coastal Vulnerability and Mitigation Proposal for an Archaeological Site (Kaulonia, Southern Italy)," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    9. Dawson, David & Shaw, Jon & Roland Gehrels, W., 2016. "Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England," Journal of Transport Geography, Elsevier, vol. 51(C), pages 97-109.
    10. Anitha Parthasarathy & Usha Natesan, 2015. "Coastal vulnerability assessment: a case study on erosion and coastal change along Tuticorin, Gulf of Mannar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1713-1729, January.
    11. Komali Kantamaneni, 2016. "Coastal infrastructure vulnerability: an integrated assessment model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 139-154, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao Huan Nguyen & Kinh Bac Dang & Van Liem Ngo & Van Bao Dang & Quang Hai Truong & Dang Hoi Nguyen & Tuan Linh Giang & Thi Phuong Nga Pham & Chi Cuong Ngo & Thi Thuy Hoang & Thi Ngoc Dang, 2021. "New Approach to Assess Multi-Scale Coastal Landscape Vulnerability to Erosion in Tropical Storms in Vietnam," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    2. Md. Mahfuzul Islam & A. Aldrie Amir & Rawshan Ara Begum, 2021. "Community awareness towards coastal hazard and adaptation strategies in Pahang coast of Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1593-1620, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra Shekhar Dwivedi & Shiva Teja Pampattiwar & Arvind Chandra Pandey & Bikash Ranjan Parida & Debashis Mitra & Navneet Kumar, 2023. "Characterization of the Coastal Vulnerability in Different Geological Settings: A Comparative Study on Kerala and Tamil Nadu Coasts Using FuzzyAHP," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    2. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    3. Edward B. Barbier, 2016. "The Protective Value of Estuarine and Coastal Ecosystem Services in a Wealth Accounting Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 37-58, May.
    4. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    5. Perla Irasema Rivadeneyra García & Federico Cornacchia & Alberto Gabino Martínez Hernández & Marco Bidoia & Carlo Giupponi, 2024. "Multi-platform assessment of coastal protection and carbon sequestration in the Venice Lagoon under future scenarios," Working Papers 2024.13, Fondazione Eni Enrico Mattei.
    6. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    7. Bifani, Paolo & Agardy, Tundi & Vivas Eugui, David & Jaramillo, Lorena & Gómez- García, René & Vignati, Federico, . "Blue BioTrade: Harnessing Marine Trade to Support Ecological Sustainability and Economic Equity," Books, CAF Development Bank Of Latinamerica, number 1415.
    8. Sirirat Sae Lim & Hong Ngoc Nguyen & Chia-Li Lin, 2022. "Exploring the Development Strategies of Science Parks Using the Hybrid MCDM Approach," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    9. Papakonstantinou, Ilia & Lee, Jinwoo & Madanat, Samer Michel, 2019. "Game theoretic approaches for highway infrastructure protection against sea level rise: Co-opetition among multiple players," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 21-37.
    10. Md. Mahfuzul Islam & A. Aldrie Amir & Rawshan Ara Begum, 2021. "Community awareness towards coastal hazard and adaptation strategies in Pahang coast of Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1593-1620, June.
    11. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    12. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    13. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    14. Kuei-Hu Chang & Yung-Chia Chang & Kai Chain & Hsiang-Yu Chung, 2016. "Integrating Soft Set Theory and Fuzzy Linguistic Model to Evaluate the Performance of Training Simulation Systems," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-29, September.
    15. Pedro Pérez-Cutillas & Pedro Baños Páez & Isabel Banos-González, 2020. "Variability of Water Balance under Climate Change Scenarios. Implications for Sustainability in the Rhône River Basin," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    16. Ariana E. Sutton-Grier & Rachel K. Gittman & Katie K. Arkema & Richard O. Bennett & Jeff Benoit & Seth Blitch & Kelly A. Burks-Copes & Allison Colden & Alyssa Dausman & Bryan M. DeAngelis & A. Randall, 2018. "Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts," Sustainability, MDPI, vol. 10(2), pages 1-11, February.
    17. Tobias Lung & Alessandro Dosio & William Becker & Carlo Lavalle & Laurens Bouwer, 2013. "Assessing the influence of climate model uncertainty on EU-wide climate change impact indicators," Climatic Change, Springer, vol. 120(1), pages 211-227, September.
    18. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    19. Wenxiu Xing & Yuan Chi & Xuejian Ma & Dahai Liu, 2021. "Spatiotemporal Characteristics of Vegetation Net Primary Productivity on an Intensively-Used Estuarine Alluvial Island," Land, MDPI, vol. 10(2), pages 1-26, January.
    20. Georgia Warren-Myers & Gideon Aschwanden & Franz Fuerst & Andy Krause, 2018. "Estimating the Potential Risks of Sea Level Rise for Public and Private Property Ownership, Occupation and Management," Risks, MDPI, vol. 6(2), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:93-:d:192938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.